Solve a QUBO Problem
In this notebook we solve a quadratic unconstrained optimization problem with
qadence
emulated analog interface using the QAOA variational algorithm. The
problem is detailed in the Pulser documentation
here.
Construct QUBO register (defines qubo_register_coords
function)
Before we start we have to define a register that fits into our device.
import torch
import numpy as np
from scipy.optimize import minimize
from scipy.spatial.distance import pdist, squareform
from pulser.devices import Chadoq2
seed = 0
np.random.seed(seed)
torch.manual_seed(seed)
def qubo_register_coords(Q):
"""Compute coordinates for register."""
bitstrings = [np.binary_repr(i, len(Q)) for i in range(len(Q) ** 2)]
costs = []
# this takes exponential time with the dimension of the QUBO
for b in bitstrings:
z = np.array(list(b), dtype=int)
cost = z.T @ Q @ z
costs.append(cost)
zipped = zip(bitstrings, costs)
sort_zipped = sorted(zipped, key=lambda x: x[1])
def evaluate_mapping(new_coords, *args):
"""Cost function to minimize. Ideally, the pairwise
distances are conserved"""
Q, shape = args
new_coords = np.reshape(new_coords, shape)
new_Q = squareform(Chadoq2.interaction_coeff / pdist(new_coords) ** 6)
return np.linalg.norm(new_Q - Q)
shape = (len(Q), 2)
costs = []
np.random.seed(0)
x0 = np.random.random(shape).flatten()
res = minimize(
evaluate_mapping,
x0,
args=(Q, shape),
method="Nelder-Mead",
tol=1e-6,
options={"maxiter": 200000, "maxfev": None},
)
return [(x, y) for (x, y) in np.reshape(res.x, (len(Q), 2))]
Define and solve QUBO
import matplotlib.pyplot as plt
import numpy as np
import torch
from qadence import add_interaction, chain
from qadence import QuantumModel, QuantumCircuit, AnalogRZ, AnalogRX, Register
seed = 0
np.random.seed(seed)
torch.manual_seed(seed)
The QUBO is defined by weighted connections Q
and a cost function.
def cost_colouring(bitstring, Q):
z = np.array(list(bitstring), dtype=int)
cost = z.T @ Q @ z
return cost
def cost_fn(counter, Q):
cost = sum(counter[key] * cost_colouring(key, Q) for key in counter)
return cost / sum(counter.values()) # Divide by total samples
Q = np.array(
[
[-10.0, 19.7365809, 19.7365809, 5.42015853, 5.42015853],
[19.7365809, -10.0, 20.67626392, 0.17675796, 0.85604541],
[19.7365809, 20.67626392, -10.0, 0.85604541, 0.17675796],
[5.42015853, 0.17675796, 0.85604541, -10.0, 0.32306662],
[5.42015853, 0.85604541, 0.17675796, 0.32306662, -10.0],
]
)
Build a register from graph extracted from the QUBO exactly as you would do with Pulser.
The analog circuit is composed of two global rotations per layer. The first rotation corresponds to the mixing Hamiltonian and the second one to the embedding Hamiltonian. Subsequently we add the Ising interaction term to emulate the analog circuit. This uses a principal quantum number n=70 for the Rydberg level under the hood.
from qadence.transpile.emulate import ising_interaction
LAYERS = 2
block = chain(*[AnalogRX(f"t{i}") * AnalogRZ(f"s{i}") for i in range(LAYERS)])
emulated = add_interaction(
reg, block, interaction=lambda r, ps: ising_interaction(r, ps, rydberg_level=70)
)
print(emulated)
ChainBlock(0,1,2,3,4)
├── ChainBlock(0,1,2,3,4)
│ ├── HamEvo(0,1,2,3,4) [params: ['51_4100727736005*t0']]
│ └── HamEvo(0,1,2,3,4) [params: ['39_0388262113427*s0']]
└── ChainBlock(0,1,2,3,4)
├── HamEvo(0,1,2,3,4) [params: ['51_4100727736005*t1']]
└── HamEvo(0,1,2,3,4) [params: ['39_0388262113427*s1']]
Sample the model to get the initial solution.
model = QuantumModel(QuantumCircuit(reg, emulated), backend="pyqtorch", diff_mode='gpsr')
initial_counts = model.sample({}, n_shots=1000)[0]
The loss function is defined by averaging over the evaluated bitstrings.
def loss(param, *args):
Q = args[0]
param = torch.tensor(param)
model.reset_vparams(param)
C = model.sample({}, n_shots=1000)[0]
return cost_fn(C, Q)
#
for i in range(20):
try:
res = minimize(
loss,
args=Q,
x0=np.random.uniform(1, 10, size=2 * LAYERS),
method="COBYLA",
tol=1e-8,
options={"maxiter": 20},
)
except Exception:
pass
# sample the optimal solution
model.reset_vparams(res.x)
optimal_count_dict = model.sample({}, n_shots=1000)[0]
print(optimal_count_dict)
fig, axs = plt.subplots(1, 2, figsize=(12, 4))
# known solutions to the QUBO
solution_bitstrings=["01011", "00111"]
n_to_show = 20
xs, ys = zip(*sorted(
initial_counts.items(),
key=lambda item: item[1],
reverse=True
))
colors = ["r" if x in solution_bitstrings else "g" for x in xs]
axs[0].set_xlabel("bitstrings")
axs[0].set_ylabel("counts")
axs[0].bar(xs[:n_to_show], ys[:n_to_show], width=0.5, color=colors)
axs[0].tick_params(axis="x", labelrotation=90)
axs[0].set_title("Initial solution")
xs, ys = zip(*sorted(optimal_count_dict.items(),
key=lambda item: item[1],
reverse=True
))
colors = ["r" if x in solution_bitstrings else "g" for x in xs]
axs[1].set_xlabel("bitstrings")
axs[1].set_ylabel("counts")
axs[1].bar(xs[:n_to_show], ys[:n_to_show], width=0.5, color=colors)
axs[1].tick_params(axis="x", labelrotation=90)
axs[1].set_title("Optimal solution")
plt.tight_layout()