Quantum Models
QuantumModel(circuit, observable=None, backend=BackendName.PYQTORCH, diff_mode=DiffMode.AD, protocol=None, configuration=None)
Bases: Module
The central class of qadence that executes QuantumCircuit
s and make them differentiable.
This class should be used as base class for any new quantum model supported in the qadence framework for information on the implementation of custom models see here.
Initialize a generic QuantumModel instance.
PARAMETER | DESCRIPTION |
---|---|
circuit |
The circuit that is executed.
TYPE:
|
observable |
Optional observable(s) that are used only in the
TYPE:
|
backend |
A backend for circuit execution.
TYPE:
|
diff_mode |
A differentiability mode. Parameter shift based modes work on all backends. AD based modes only on PyTorch based backends.
TYPE:
|
protocol |
Optional measurement protocol. If None, use exact expectation value with a statevector simulator.
TYPE:
|
configuration |
Configuration for the backend.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
if the |
Source code in qadence/models/quantum_model.py
in_features: int
property
Number of inputs.
num_vparams: int
property
The number of variational parameters
out_features: int | None
property
Number of outputs
vals_vparams: Tensor
property
Dictionary with parameters which are actually updated during optimization
assign_parameters(values)
Return the final, assigned circuit that is used in e.g. backend.run
Source code in qadence/models/quantum_model.py
expectation(values={}, observable=None, state=None, protocol=None, endianness=Endianness.BIG)
Compute expectation using the given backend.
RETURNS | DESCRIPTION |
---|---|
Tensor
|
A torch.Tensor of shape n_batches x n_obs |
Source code in qadence/models/quantum_model.py
reset_vparams(values)
Reset all the variational parameters with a given list of values
Source code in qadence/models/quantum_model.py
QNN(circuit, observable, transform=None, backend=BackendName.PYQTORCH, diff_mode=DiffMode.AD, protocol=None, configuration=None)
Bases: QuantumModel
Quantum neural network model for n-dimensional inputs
Examples:
import torch
from qadence import QuantumCircuit, QNN
from qadence import hea, feature_map, hamiltonian_factory, Z
# create the circuit
n_qubits, depth = 2, 4
fm = feature_map(n_qubits)
ansatz = hea(n_qubits=n_qubits, depth=depth)
circuit = QuantumCircuit(n_qubits, fm, ansatz)
obs_base = hamiltonian_factory(n_qubits, detuning = Z)
# the QNN will yield two outputs
obs = [2.0 * obs_base, 4.0 * obs_base]
# initialize and use the model
qnn = QNN(circuit, obs, diff_mode="ad", backend="pyqtorch")
y = qnn.expectation({"phi": torch.rand(3)})
Initialize the QNN
The number of inputs is determined by the feature parameters in the input quantum circuit while the number of outputs is determined by how many observables are provided as input
PARAMETER | DESCRIPTION |
---|---|
circuit |
The quantum circuit to use for the QNN.
TYPE:
|
transform |
A transformation applied to the output of the QNN.
TYPE:
|
backend |
The chosen quantum backend.
TYPE:
|
diff_mode |
The differentiation engine to use. Choices 'gpsr' or 'ad'.
TYPE:
|
protocol |
optional measurement protocol. If None, use exact expectation value with a statevector simulator
TYPE:
|
configuration |
optional configuration for the backend
TYPE:
|
Source code in qadence/models/qnn.py
forward(values=None, state=None, protocol=None, endianness=Endianness.BIG)
Forward pass of the model
This returns the (differentiable) expectation value of the given observable
operator defined in the constructor. Differently from the base QuantumModel
class, the QNN accepts also a tensor as input for the forward pass. The
tensor is expected to have shape: n_batches x in_features
where n_batches
is the number of data points and in_features
is the dimensionality of the problem
The output of the forward pass is the expectation value of the input
observable(s). If a single observable is given, the output shape is
n_batches
while if multiple observables are given the output shape
is instead n_batches x n_observables
PARAMETER | DESCRIPTION |
---|---|
values |
the values of the feature parameters
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
a tensor with the expectation value of the observables passed in the constructor of the model
TYPE:
|