Skip to content

Constructing arbitrary Hamiltonians

At the heart of digital-analog quantum computing is the description and execution of analog blocks, which represent a set of interacting qubits under some interaction Hamiltonian. For this purpose, Qadence relies on the hamiltonian_factory function to create arbitrary Hamiltonian blocks to be used as generators of HamEvo or as observables to be measured.

Arbitrary all-to-all Hamiltonians

Arbitrary all-to-all interaction Hamiltonians can be easily created by passing the number of qubits in the first argument. The type of interaction can be chosen from the available ones in the Interaction enum type.

from qadence import hamiltonian_factory
from qadence import N, X, Y, Z
from qadence import Interaction

n_qubits = 3

hamilt = hamiltonian_factory(n_qubits, interaction=Interaction.ZZ)
AddBlock(0,1,2)
├── [mul: 1.00000000000000] 
   └── KronBlock(0,1)
       ├── Z(0)
       └── Z(1)
├── [mul: 1.00000000000000] 
   └── KronBlock(0,2)
       ├── Z(0)
       └── Z(2)
└── [mul: 1.00000000000000] 
    └── KronBlock(1,2)
        ├── Z(1)
        └── Z(2)

Single-qubit terms can also be added by passing the respective operator directly to the detuning argument. For example, the total magnetization is commonly used as an observable to be measured:

total_mag = hamiltonian_factory(n_qubits, detuning = Z)
AddBlock(0,1,2)
├── [mul: 1.00000000000000] 
   └── Z(0)
├── [mul: 1.00000000000000] 
   └── Z(1)
└── [mul: 1.00000000000000] 
    └── Z(2)

For further customization, arbitrary coefficients can be passed as arrays to the interaction_strength and detuning_strength arguments for the two-qubits and single-qubit terms respectively.

n_qubits = 3

hamilt = hamiltonian_factory(
    n_qubits,
    interaction=Interaction.ZZ,
    detuning=Z,
    interaction_strength=[0.5, 0.2, 0.1],
    detuning_strength=[0.1, 0.5, -0.3]
)
AddBlock(0,1,2)
├── [mul: 0.100] 
   └── Z(0)
├── [mul: 0.500] 
   └── Z(1)
├── [mul: -0.300] 
   └── Z(2)
├── [mul: 0.500] 
   └── KronBlock(0,1)
       ├── Z(0)
       └── Z(1)
├── [mul: 0.200] 
   └── KronBlock(0,2)
       ├── Z(0)
       └── Z(2)
└── [mul: 0.100] 
    └── KronBlock(1,2)
        ├── Z(1)
        └── Z(2)

Ordering interaction strengths matters

When passing interaction strengths as an array, the ordering must be indentical to the one obtained from the edge property of a Qadence Register:

from qadence import Register

print(Register(n_qubits).edges)
[(0, 1), (0, 2), (1, 2)]

For one more example, let's create a transverse-field Ising model,

n_qubits = 4
n_edges = int(0.5 * n_qubits * (n_qubits - 1))

z_terms = [1.0] * n_qubits
zz_terms = [2.0] * n_edges

zz_ham = hamiltonian_factory(
    n_qubits,
    interaction=Interaction.ZZ,
    detuning=Z,
    interaction_strength=zz_terms,
    detuning_strength=z_terms
)

x_terms = [-1.0] * n_qubits
x_ham = hamiltonian_factory(n_qubits, detuning = X, detuning_strength = x_terms)

transverse_ising = zz_ham + x_ham
AddBlock(0,1,2,3)
├── AddBlock(0,1,2,3)
   ├── [mul: 1.00000000000000] 
      └── Z(0)
   ├── [mul: 1.00000000000000] 
      └── Z(1)
   ├── [mul: 1.00000000000000] 
      └── Z(2)
   ├── [mul: 1.00000000000000] 
      └── Z(3)
   ├── [mul: 2.00000000000000] 
      └── KronBlock(0,1)
          ├── Z(0)
          └── Z(1)
   ├── [mul: 2.00000000000000] 
      └── KronBlock(0,2)
          ├── Z(0)
          └── Z(2)
   ├── [mul: 2.00000000000000] 
      └── KronBlock(0,3)
          ├── Z(0)
          └── Z(3)
   ├── [mul: 2.00000000000000] 
      └── KronBlock(1,2)
          ├── Z(1)
          └── Z(2)
   ├── [mul: 2.00000000000000] 
      └── KronBlock(1,3)
          ├── Z(1)
          └── Z(3)
   └── [mul: 2.00000000000000] 
       └── KronBlock(2,3)
           ├── Z(2)
           └── Z(3)
└── AddBlock(0,1,2,3)
    ├── [mul: -1.00000000000000] 
       └── X(0)
    ├── [mul: -1.00000000000000] 
       └── X(1)
    ├── [mul: -1.00000000000000] 
       └── X(2)
    └── [mul: -1.00000000000000] 
        └── X(3)

Random interaction coefficients

Random interaction coefficients can be chosen between -1 and 1 by simply passing random_strength = True instead of detuning_strength and interaction_strength.

Arbitrary Hamiltonian topologies

Arbitrary interaction topologies can be created using the Qadence Register. Simply pass the register with the desired topology as the first argument to the hamiltonian_factory:

from qadence import Register

reg = Register.square(qubits_side=2)

square_hamilt = hamiltonian_factory(reg, interaction=Interaction.NN)
AddBlock(0,1,2,3)
├── [mul: 1.00000000000000] 
   └── KronBlock(0,1)
       ├── N(0)
       └── N(1)
├── [mul: 1.00000000000000] 
   └── KronBlock(0,3)
       ├── N(0)
       └── N(3)
├── [mul: 1.00000000000000] 
   └── KronBlock(1,2)
       ├── N(1)
       └── N(2)
└── [mul: 1.00000000000000] 
    └── KronBlock(2,3)
        ├── N(2)
        └── N(3)

Custom Hamiltonian coefficients can also be added to the register beforehand using the "strength" key.

reg = Register.square(qubits_side = 2)

for i, edge in enumerate(reg.edges):
    reg.edges[edge]["strength"] = (0.5 * i) ** 2

square_hamilt = hamiltonian_factory(reg, interaction=Interaction.NN)
AddBlock(0,1,2,3)
├── [mul: 0.0] 
   └── KronBlock(0,1)
       ├── N(0)
       └── N(1)
├── [mul: 0.250] 
   └── KronBlock(0,3)
       ├── N(0)
       └── N(3)
├── [mul: 1.00000000000000] 
   └── KronBlock(1,2)
       ├── N(1)
       └── N(2)
└── [mul: 2.250] 
    └── KronBlock(2,3)
        ├── N(2)
        └── N(3)

Alternatively, if the register already stores interaction or detuning strengths, it is possible to override them in the Hamiltonian creation by using force_update = True.

Adding variational parameters

Finally, fully parameterized Hamiltonians can be created by passing a string to the strength arguments:

n_qubits = 3

nn_ham = hamiltonian_factory(
    n_qubits,
    interaction=Interaction.NN,
    detuning=N,
    interaction_strength="c",
    detuning_strength="d"
)
AddBlock(0,1,2)
├── [mul: d_0] 
   └── N(0)
├── [mul: d_1] 
   └── N(1)
├── [mul: d_2] 
   └── N(2)
├── [mul: c_01] 
   └── KronBlock(0,1)
       ├── N(0)
       └── N(1)
├── [mul: c_02] 
   └── KronBlock(0,2)
       ├── N(0)
       └── N(2)
└── [mul: c_12] 
    └── KronBlock(1,2)
        ├── N(1)
        └── N(2)