Skip to content

Quantum circuit learning

This tutorial shows how to apply qadence for solving a basic quantum machine learning application: fitting a simple function with the quantum circuit learning1 (QCL) algorithm.

QCL is a supervised quantum machine learning algorithm that uses a parametrized quantum neural network to learn the behavior of an arbitrary mathematical function using a set of function values as training data. This tutorial shows how to fit the \(\sin(x)\) function in the \([-1, 1]\) domain.

In the following, train and test data are defined.

import torch
from torch.utils.data import random_split

# make sure all tensors are kept on the same device
# only available from PyTorch 2.0
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.set_default_device(device)

def qcl_training_data(
    domain: tuple = (0, 2*torch.pi), n_points: int = 200
) -> tuple[torch.Tensor, torch.Tensor]:

    start, end = domain

    x_rand, _ = torch.sort(torch.DoubleTensor(n_points).uniform_(start, end))
    y_rand = torch.sin(x_rand)

    return x_rand, y_rand

x, y = qcl_training_data()

# random train/test split of the dataset
train_subset, test_subset = random_split(x, [0.75, 0.25])
train_ind = sorted(train_subset.indices)
test_ind = sorted(test_subset.indices)

x_train, y_train = x[train_ind], y[train_ind]
x_test, y_test = x[test_ind], y[test_ind]

Train the QCL model

Qadence provides the QNN convenience constructor to build a quantum neural network. The QNN class needs a circuit and a list of observables; the number of feature parameters in the input circuit determines the number of input features (i.e. the dimensionality of the classical data given as input) whereas the number of observables determines the number of outputs of the quantum neural network.

Total qubit magnetization is used as observable:

\[ \hat{O} = \sum_i^N \hat{\sigma}_i^z \]

In the following the observable, quantum circuit and corresponding QNN model are constructed.

import qadence as qd

n_qubits = 4

# create a simple feature map to encode the input data
feature_param = qd.FeatureParameter("phi")
feature_map = qd.kron(qd.RX(i, feature_param) for i in range(n_qubits))
feature_map = qd.tag(feature_map, "feature_map")

# create a digital-analog variational ansatz using Qadence convenience constructors
ansatz = qd.hea(n_qubits, depth=n_qubits)
ansatz = qd.tag(ansatz, "ansatz")

# total qubit magnetization observable
observable = qd.hamiltonian_factory(n_qubits, detuning=qd.Z)

circuit = qd.QuantumCircuit(n_qubits, feature_map, ansatz)
model = qd.QNN(circuit, [observable])
expval = model(values=torch.rand(10))
tensor([[0.2025],
        [0.1315],
        [0.2424],
        [0.1552],
        [0.1592],
        [0.2063],
        [0.1899],
        [0.2208],
        [0.2472],
        [0.1580]], grad_fn=<CatBackward0>)

The QCL algorithm uses the output of the quantum neural network as a tunable universal function approximator. Standard PyTorch code is used for training the QNN using a mean-square error loss, Adam optimizer. Training is performend on the GPU if available:

n_epochs = 100
lr = 0.25

input_values = {"phi": x_train}
mse_loss = torch.nn.MSELoss()  # standard PyTorch loss function
optimizer = torch.optim.Adam(model.parameters(), lr=lr)  # standard PyTorch Adam optimizer

print(f"Initial loss: {mse_loss(model(values=x_train), y_train)}")
y_pred_initial = model(values=x_test)

for i in range(n_epochs):

    optimizer.zero_grad()

    # given a `n_batch` number of input points and a `n_observables`
    # number of input observables to measure, the QNN returns
    # an output of the following shape: [n_batch x n_observables]
    # given that there is only one observable, a squeeze is applied to get
    # a 1-dimensional tensor
    loss = mse_loss(model(values=x_train).squeeze(), y_train)
    loss.backward()
    optimizer.step()

    if (i+1) % 20 == 0:
        print(f"Epoch {i+1} - Loss: {loss.item()}")

assert loss.item() < 1e-3
Initial loss: 0.6533070454755132
Epoch 20 - Loss: 0.00675673293288311
Epoch 40 - Loss: 0.0013178262682414614
Epoch 60 - Loss: 0.00024411275385790839
Epoch 80 - Loss: 1.8109270091471018e-05
Epoch 100 - Loss: 3.344354751243779e-06

Qadence offers some convenience functions to implement this training loop with advanced logging and metrics track features. You can refer to this tutorial for more details.

The quantum model is now trained on the training data points. To determine the quality of the results, one can check to see how well it fits the function on the test set.

import matplotlib.pyplot as plt

y_pred = model({"phi": x_test})

# convert all the results to numpy arrays for plotting
x_train_np = x_train.cpu().detach().numpy().flatten()
y_train_np = y_train.cpu().detach().numpy().flatten()
x_test_np = x_test.cpu().detach().numpy().flatten()
y_test_np = y_test.cpu().detach().numpy().flatten()
y_pred_initial_np = y_pred_initial.cpu().detach().numpy().flatten()
y_pred_np = y_pred.cpu().detach().numpy().flatten()

fig, _ = plt.subplots()
plt.scatter(x_test_np, y_test_np, label="Test points", marker="o", color="orange")
plt.plot(x_test_np, y_pred_initial_np, label="Initial prediction", color="green", alpha=0.5)
plt.plot(x_test_np, y_pred_np, label="Final prediction")
plt.legend()
2023-11-13T15:11:58.356244 image/svg+xml Matplotlib v3.7.3, https://matplotlib.org/

References