Skip to content

Parametric programs

Qadence provides a flexible parameter system built on top of Sympy. Parameters can be of different types:

  • Fixed parameter: a constant with a fixed, non-trainable value (e.g. \(\dfrac{\pi}{2}\)).
  • Variational parameter: a trainable parameter which will be automatically picked up by the optimizer.
  • Feature parameter: a non-trainable parameter which can be used to pass input values.

Fixed parameters

Passing fixed parameters to blocks can be done by simply passing a Python numeric type or a torch.Tensor.

import torch
from qadence import RX, run, PI

wf = run(RX(0, torch.tensor(PI)))

wf = run(RX(0, PI))
wf = tensor([[6.1232e-17+0.j, 0.0000e+00-1.j]])
wf = tensor([[6.1232e-17+0.j, 0.0000e+00-1.j]])

Variational parameters

To parametrize a block a VariationalParameter instance is required. In most cases Qadence also accepts a Python string, which will be used to automatically initialize a VariationalParameter:

from qadence import RX, run, VariationalParameter

block = RX(0, VariationalParameter("theta"))
block = RX(0, "theta")  # Equivalent

wf = run(block)
wf = tensor([[0.9423+0.0000j, 0.0000-0.3348j]])

By calling run, a random value for "theta" is initialized at execution. In a QuantumModel, variational parameters are stored in the underlying model parameter dictionary.

Feature parameters

A FeatureParameter type can also be used. It requires an input value or a batch of values. In most cases, Qadence accepts a values dictionary to set the input of feature parameters.

from torch import tensor
from qadence import RX, PI, run, FeatureParameter

block = RX(0, FeatureParameter("phi"))

wf = run(block, values = {"phi": tensor([PI, PI/2])})
wf = tensor([[6.1232e-17+0.0000j, 0.0000e+00-1.0000j],
        [7.0711e-01+0.0000j, 0.0000e+00-0.7071j]])

Since a batch of input values was passed, the run function returns a batch of output states. Note that FeatureParameter("x") and VariationalParameter("x") are simply aliases for Parameter("x", trainable = False) and Parameter("x", trainable = True).

Multiparameter expressions and analog integration

The integration with Sympy becomes useful when one wishes to write arbitrary parameter compositions. Parameters can also be used as scaling coefficients in the block system, which is essential when defining arbitrary analog operations.

from torch import tensor
from qadence import RX, Z, HamEvo, PI
from qadence import VariationalParameter, FeatureParameter, run
from sympy import sin

theta, phi = VariationalParameter("theta"), FeatureParameter("phi")

# Arbitrary parameter composition
expr = PI * sin(theta + phi)

# Use as unitary gate arguments
gate = RX(0, expr)

# Or as scaling coefficients for Hermitian operators
h_op = expr * (Z(0) @ Z(1))

wf = run(gate * HamEvo(h_op, 1.0), values = {"phi": tensor(PI)})
wf = tensor([[0.5226+0.7213j, 0.0000+0.0000j, 0.3681+0.2667j, 0.0000+0.0000j]])

Parameter redundancy

Parameters are uniquely defined by their name and redundancy is allowed in composite blocks to assign the same value to different blocks. This is useful, for example, when defining layers of rotation gates typically used as feature maps.

from torch import tensor
from qadence import RY, PI, run, kron, FeatureParameter

n_qubits = 3

param = FeatureParameter("phi")

block = kron(RY(i, (i+1) * param) for i in range(n_qubits))

wf = run(block, values = {"phi": tensor(PI)})
wf = tensor([[ 1.1248e-32+0.j,  6.1232e-17+0.j, -1.3775e-48+0.j, -7.4988e-33+0.j,
          1.8370e-16+0.j,  1.0000e+00+0.j, -2.2496e-32+0.j, -1.2246e-16+0.j]])

Parametrized circuits

Let's look at a final example of an arbitrary composition of digital and analog parameterized blocks:

import sympy
from qadence import RX, RY, RZ, CNOT, CPHASE, Z, HamEvo
from qadence import run, chain, add, kron, FeatureParameter, VariationalParameter, PI

n_qubits = 3

phi = FeatureParameter("Φ")
theta = VariationalParameter("θ")

rotation_block = kron(
    RX(0, phi/theta),
    RY(1, theta*2),
    RZ(2, sympy.cos(phi))
)
digital_entangler = CNOT(0, 1) * CPHASE(1, 2, PI)

hamiltonian = add(theta * (Z(i) @ Z(i+1)) for i in range(n_qubits-1))

analog_evo = HamEvo(hamiltonian, phi)

program = chain(rotation_block, digital_entangler, analog_evo)
%3 cluster_5949c61ba21f445387d95bd108f9d9cf a2e0446836b94f7db655dd33a2b4abd0 0 4be7447a308746e7b413ea250d7b7f64 RX(Φ/θ) a2e0446836b94f7db655dd33a2b4abd0--4be7447a308746e7b413ea250d7b7f64 44052486f8b147fe96326b6f720c9327 1 1b846ca4c4924247a19d46e2d05d20d6 4be7447a308746e7b413ea250d7b7f64--1b846ca4c4924247a19d46e2d05d20d6 ada578cffc6a4695b34170a1b883f6dd 1b846ca4c4924247a19d46e2d05d20d6--ada578cffc6a4695b34170a1b883f6dd 27cc111cb0794daaa670f93bd11a8033 HamEvo ada578cffc6a4695b34170a1b883f6dd--27cc111cb0794daaa670f93bd11a8033 bbaf9a609c7a44eeaafd8a7b27a15ac0 27cc111cb0794daaa670f93bd11a8033--bbaf9a609c7a44eeaafd8a7b27a15ac0 f0c68bc4dece41bcba2c96dc32fe1b92 c74b807e28304ab2939b70c801e4a4d9 RY(2*θ) 44052486f8b147fe96326b6f720c9327--c74b807e28304ab2939b70c801e4a4d9 cd67ccbbdc7543b8bab8f71e92c9cabe 2 176622f1d3a34af6ae2ce493a00c2e38 X c74b807e28304ab2939b70c801e4a4d9--176622f1d3a34af6ae2ce493a00c2e38 176622f1d3a34af6ae2ce493a00c2e38--1b846ca4c4924247a19d46e2d05d20d6 85a365f3f9544f9abed5b1bae77fb88a 176622f1d3a34af6ae2ce493a00c2e38--85a365f3f9544f9abed5b1bae77fb88a 60a39bf778a74976a551b13aa04e7966 t = Φ 85a365f3f9544f9abed5b1bae77fb88a--60a39bf778a74976a551b13aa04e7966 60a39bf778a74976a551b13aa04e7966--f0c68bc4dece41bcba2c96dc32fe1b92 96046dc5a25e49b4aafc3099fc5042a0 05f934382ee848afa739782a47423a02 RZ(cos(Φ)) cd67ccbbdc7543b8bab8f71e92c9cabe--05f934382ee848afa739782a47423a02 e57a62b19fc345799c21b49a64147775 05f934382ee848afa739782a47423a02--e57a62b19fc345799c21b49a64147775 da9bbd9812c848a7a53f3d7690e4863a PHASE(3.142) e57a62b19fc345799c21b49a64147775--da9bbd9812c848a7a53f3d7690e4863a da9bbd9812c848a7a53f3d7690e4863a--85a365f3f9544f9abed5b1bae77fb88a 0472c29678274e60a1346c0bb6406a5b da9bbd9812c848a7a53f3d7690e4863a--0472c29678274e60a1346c0bb6406a5b 0472c29678274e60a1346c0bb6406a5b--96046dc5a25e49b4aafc3099fc5042a0

Please note the different colors for the parametrization with different types. The default palette assigns blue for VariationalParameter, green for FeatureParameter, orange for numeric values, and shaded red for non-parametric gates.