State initialization
Qadence offers convenience routines for preparing initial quantum states.
These routines are divided into two approaches:
As a dense matrix.
From a suitable quantum circuit. This is available for every backend and it should be added
in front of the desired quantum circuit to simulate.
Let's illustrate the usage of the state preparation routine.
from qadence import random_state , product_state , is_normalized , StateGeneratorType
# Random initial state.
# the default `type` is StateGeneratorType.HaarMeasureFast
state = random_state ( n_qubits = 2 , type = StateGeneratorType . RANDOM_ROTATIONS )
# Check the normalization.
assert is_normalized ( state )
# Product state from a given bitstring.
# NB: Qadence follows the big endian convention.
state = product_state ( "01" )
Ra n dom i n i t ial s tate ge nerate d wi t h ro tat io ns :
s tate = [ 0.90080003+0. j -0.4339478 + 0. j 0. + 0.01420496 j
0. -0.00684304 j ]
Produc t s tate correspo n di n g t o bi tstr i n g ' 01 ' :
s tate = [ 0.+0. j 1.+0. j 0.+0. j 0.+0. j ]
Now we see how to generate the product state corresponding to the one above with
a suitable quantum circuit.
from qadence import product_block , tag , hea , QuantumCircuit
from qadence.draw import display
state_prep_block = product_block ( "01" )
# display(state_prep_block)
# Let's now prepare a circuit.
n_qubits = 4
state_prep_block = product_block ( "0001" )
tag ( state_prep_block , "Prep block" )
circuit_block = tag ( hea ( n_qubits , depth = 2 ), "Circuit block" )
qc_with_state_prep = QuantumCircuit ( n_qubits , state_prep_block , circuit_block )
%3
cluster_734219934fbb4504ba0fcdc320f3e10a
Circuit block
cluster_ed16e682cc4d4dab8ecd0c2cd17763ed
Prep block
24f6e23f04984d0b9dd9907d26bd9c38
0
a1860d7d8f444531a809b17e3ac4acd2
24f6e23f04984d0b9dd9907d26bd9c38--a1860d7d8f444531a809b17e3ac4acd2
de5fbc8b34bb4761b3719d4e94cada9f
1
2fe9b3a40663427bb7ce78b88e88f964
RX(theta₀)
a1860d7d8f444531a809b17e3ac4acd2--2fe9b3a40663427bb7ce78b88e88f964
06d44b8d2469410a90823210af43f3ef
RY(theta₄)
2fe9b3a40663427bb7ce78b88e88f964--06d44b8d2469410a90823210af43f3ef
5750aab0dd2f47c893c8d7d7b3302655
RX(theta₈)
06d44b8d2469410a90823210af43f3ef--5750aab0dd2f47c893c8d7d7b3302655
e9c49566339147888545c99963513037
5750aab0dd2f47c893c8d7d7b3302655--e9c49566339147888545c99963513037
36b45805a848485c92d2ed6bfaa91ce2
e9c49566339147888545c99963513037--36b45805a848485c92d2ed6bfaa91ce2
e7659fd149394fc0af57a6eafac86a95
RX(theta₁₂)
36b45805a848485c92d2ed6bfaa91ce2--e7659fd149394fc0af57a6eafac86a95
94a96ba395ec4b89ba4bef2d86fd1e82
RY(theta₁₆)
e7659fd149394fc0af57a6eafac86a95--94a96ba395ec4b89ba4bef2d86fd1e82
7d80947938954e40b6df225d962dde80
RX(theta₂₀)
94a96ba395ec4b89ba4bef2d86fd1e82--7d80947938954e40b6df225d962dde80
5f680224c3704295909e6e7308a38644
7d80947938954e40b6df225d962dde80--5f680224c3704295909e6e7308a38644
580bba694708467fa5e433da5298eb91
5f680224c3704295909e6e7308a38644--580bba694708467fa5e433da5298eb91
b1b8f78e8e0f4385b1cc0f73c45bb6a8
580bba694708467fa5e433da5298eb91--b1b8f78e8e0f4385b1cc0f73c45bb6a8
a3c9281bb7364d2f9d50de0fa9b6a6e8
ff40136af5144f3a820a6c8f5dba90be
de5fbc8b34bb4761b3719d4e94cada9f--ff40136af5144f3a820a6c8f5dba90be
aefcd584517845e4884870c17b5ab335
2
a786c3c1b3ac4415ab46de43f7e25d18
RX(theta₁)
ff40136af5144f3a820a6c8f5dba90be--a786c3c1b3ac4415ab46de43f7e25d18
9562b22fb3904bf180d94bb96c963f5e
RY(theta₅)
a786c3c1b3ac4415ab46de43f7e25d18--9562b22fb3904bf180d94bb96c963f5e
787900a5ee4440be8cb3ffc3ffba7e17
RX(theta₉)
9562b22fb3904bf180d94bb96c963f5e--787900a5ee4440be8cb3ffc3ffba7e17
a95ac0051643451a811d6a89ae8b62f5
X
787900a5ee4440be8cb3ffc3ffba7e17--a95ac0051643451a811d6a89ae8b62f5
a95ac0051643451a811d6a89ae8b62f5--e9c49566339147888545c99963513037
1b2db72f25e44e1897e064700b86e0f2
a95ac0051643451a811d6a89ae8b62f5--1b2db72f25e44e1897e064700b86e0f2
516fce1c918a4a3198f466fe28e66684
RX(theta₁₃)
1b2db72f25e44e1897e064700b86e0f2--516fce1c918a4a3198f466fe28e66684
f8bf71c1ffb148ec9798dfb32ef9c30c
RY(theta₁₇)
516fce1c918a4a3198f466fe28e66684--f8bf71c1ffb148ec9798dfb32ef9c30c
33a07ccc755d421b8583b173c43dd140
RX(theta₂₁)
f8bf71c1ffb148ec9798dfb32ef9c30c--33a07ccc755d421b8583b173c43dd140
c4cbad772bab465ebfc9a590990262f0
X
33a07ccc755d421b8583b173c43dd140--c4cbad772bab465ebfc9a590990262f0
c4cbad772bab465ebfc9a590990262f0--5f680224c3704295909e6e7308a38644
77e631f9585248d7afa4eeaf1777699a
c4cbad772bab465ebfc9a590990262f0--77e631f9585248d7afa4eeaf1777699a
77e631f9585248d7afa4eeaf1777699a--a3c9281bb7364d2f9d50de0fa9b6a6e8
6f7d7cf23a3d4314aed8c5154c0f777a
29a721ceb7c24caeaa745ba6023df682
aefcd584517845e4884870c17b5ab335--29a721ceb7c24caeaa745ba6023df682
c88c110b2ef546d2828065e398269995
3
53a50100731e4352842805c79c29ce7d
RX(theta₂)
29a721ceb7c24caeaa745ba6023df682--53a50100731e4352842805c79c29ce7d
89bd8710a1be4903acf4a8d9c41cb5da
RY(theta₆)
53a50100731e4352842805c79c29ce7d--89bd8710a1be4903acf4a8d9c41cb5da
0c37c20847f74c408878556eb0a4efba
RX(theta₁₀)
89bd8710a1be4903acf4a8d9c41cb5da--0c37c20847f74c408878556eb0a4efba
da6c49bec7704af392791959d5180ee4
0c37c20847f74c408878556eb0a4efba--da6c49bec7704af392791959d5180ee4
cf0b067cd281425f8d82e9496eaf345f
X
da6c49bec7704af392791959d5180ee4--cf0b067cd281425f8d82e9496eaf345f
cf0b067cd281425f8d82e9496eaf345f--1b2db72f25e44e1897e064700b86e0f2
7f919045da524a96be493fa20f1a0816
RX(theta₁₄)
cf0b067cd281425f8d82e9496eaf345f--7f919045da524a96be493fa20f1a0816
716b01decf414e3296dd05e17b1cac1e
RY(theta₁₈)
7f919045da524a96be493fa20f1a0816--716b01decf414e3296dd05e17b1cac1e
fcb4579550c94550a6e81f1f4d96910f
RX(theta₂₂)
716b01decf414e3296dd05e17b1cac1e--fcb4579550c94550a6e81f1f4d96910f
b166277368f644c2980576b3c80a9e99
fcb4579550c94550a6e81f1f4d96910f--b166277368f644c2980576b3c80a9e99
0873e6baf76a4030a47f222909b175f9
X
b166277368f644c2980576b3c80a9e99--0873e6baf76a4030a47f222909b175f9
0873e6baf76a4030a47f222909b175f9--77e631f9585248d7afa4eeaf1777699a
0873e6baf76a4030a47f222909b175f9--6f7d7cf23a3d4314aed8c5154c0f777a
d9fd8ecabf8c445b822ab952385ad1ab
5a4072dd7d5e40e78adc9e9825defc58
X
c88c110b2ef546d2828065e398269995--5a4072dd7d5e40e78adc9e9825defc58
4de7ab77a3b04150bf153d48d55227aa
RX(theta₃)
5a4072dd7d5e40e78adc9e9825defc58--4de7ab77a3b04150bf153d48d55227aa
fca1f73a584f4538bba0e7d19f5fea51
RY(theta₇)
4de7ab77a3b04150bf153d48d55227aa--fca1f73a584f4538bba0e7d19f5fea51
e286116af2424595b561f5e09ea4c36c
RX(theta₁₁)
fca1f73a584f4538bba0e7d19f5fea51--e286116af2424595b561f5e09ea4c36c
40a4aea9a62f4c5fb45f9746d20e844a
X
e286116af2424595b561f5e09ea4c36c--40a4aea9a62f4c5fb45f9746d20e844a
40a4aea9a62f4c5fb45f9746d20e844a--da6c49bec7704af392791959d5180ee4
9b9aeb25736346d8b07e3dbc501029b0
40a4aea9a62f4c5fb45f9746d20e844a--9b9aeb25736346d8b07e3dbc501029b0
30d184b3f1164c40b4ab79dcdfb04625
RX(theta₁₅)
9b9aeb25736346d8b07e3dbc501029b0--30d184b3f1164c40b4ab79dcdfb04625
af505f221db74f9fbdea9a2d2801ab11
RY(theta₁₉)
30d184b3f1164c40b4ab79dcdfb04625--af505f221db74f9fbdea9a2d2801ab11
dc8a3f16bdd54feba027337d538b353b
RX(theta₂₃)
af505f221db74f9fbdea9a2d2801ab11--dc8a3f16bdd54feba027337d538b353b
255dcaf332e44962b2c8c7e24515f60d
X
dc8a3f16bdd54feba027337d538b353b--255dcaf332e44962b2c8c7e24515f60d
255dcaf332e44962b2c8c7e24515f60d--b166277368f644c2980576b3c80a9e99
39c809405bc14766831926c2f2be4e23
255dcaf332e44962b2c8c7e24515f60d--39c809405bc14766831926c2f2be4e23
39c809405bc14766831926c2f2be4e23--d9fd8ecabf8c445b822ab952385ad1ab
Several standard quantum states can be conveniently initialized in Qadence, both in statevector form as well as in block form as shown in following.
State vector initialization
Qadence offers a number of constructor functions for state vector preparation.
from qadence import uniform_state , zero_state , one_state
n_qubits = 3
batch_size = 2
uniform_state = uniform_state ( n_qubits , batch_size )
zero_state = zero_state ( n_qubits , batch_size )
one_state = one_state ( n_qubits , batch_size )
U n i f orm s tate =
tens or( [[ 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j ,
0.3536+0. j ],
[ 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j ,
0.3536+0. j ]] )
Zero s tate =
tens or( [[ 1.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ],
[ 1.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ]] )
O ne s tate =
tens or( [[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 1.+0. j ],
[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 1.+0. j ]] )
As already seen, product states can be easily created, even in batches:
from qadence import product_state , rand_product_state
# From a bitsring "100"
prod_state = product_state ( "100" , batch_size )
# Or a random product state
rand_state = rand_product_state ( n_qubits , batch_size )
Produc t s tate =
tens or( [[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 1.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ]] )
Ra n dom s tate =
tens or( [[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 1.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ],
[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 1.+0. j , 0.+0. j ]] )
Creating a GHZ state:
from qadence import ghz_state
ghz = ghz_state ( n_qubits , batch_size )
GHZ s tate =
tens or( [[ 0.7071+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j ,
0.7071+0. j ],
[ 0.7071+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j ,
0.7071+0. j ]] )
Creating a random state uniformly sampled from a Haar measure:
from qadence import random_state
rand_haar_state = random_state ( n_qubits , batch_size )
Ra n dom s tate fr om Haar =
tens or( [[ 0.1637+0.0958 j , -0.0597-0.1402 j , -0.0572+0.1872 j , -0.6421+0.3065 j ,
0.2309-0.0577 j , -0.2093-0.4496 j , -0.0153-0.1012 j , 0.0643+0.2813 j ],
[ -0.2104+0.3493 j , -0.1238+0.3375 j , 0.2100-0.0803 j , -0.1789+0.1848 j ,
0.0055-0.0008 j , 0.1813-0.0599 j , -0.0892-0.3952 j , -0.2575+0.5664 j ]] )
Custom initial states can then be passed to either run
, sample
and expectation
through the state
argument
from qadence import random_state , product_state , CNOT , run
init_state = product_state ( "10" )
final_state = run ( CNOT ( 0 , 1 ), state = init_state )
Fi nal s tate = tens or( [[ 0.+0. j , 0.+0. j , 0.+0. j , 1.+0. j ]] )
Density matrices conversion
It is also possible to obtain density matrices from statevectors. They can be passed as inputs to quantum programs performing density matrix based operations such as noisy simulations, when the backend allows such as PyQTorch.
from qadence import product_state , density_mat
init_state = product_state ( "10" )
init_density_matrix = density_mat ( init_state )
final_density_matrix = run ( CNOT ( 0 , 1 ), state = init_density_matrix )
I n i t ial = De ns i t yMa tr ix( [[[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ],
[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ],
[ 0.+0. j , 0.+0. j , 1.+0. j , 0.+0. j ],
[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ]]] )
Fi nal = De ns i t yMa tr ix( [[[ 0.-0. j , 0.-0. j , 0.-0. j , 0.-0. j ],
[ 0.-0. j , 0.-0. j , 0.-0. j , 0.-0. j ],
[ 0.-0. j , 0.-0. j , 0.-0. j , 0.-0. j ],
[ 0.-0. j , 0.-0. j , 0.-0. j , 1.-0. j ]]] )
Block initialization
Not all backends support custom statevector initialization, however previous utility functions have their counterparts to initialize the respective blocks:
from qadence import uniform_block , one_block
n_qubits = 3
uniform_block = uniform_block ( n_qubits )
one_block = one_block ( n_qubits )
Kro n Block( 0 , 1 , 2 )
├── H( 0 )
├── H( 1 )
└── H( 2 )
Kro n Block( 0 , 1 , 2 )
├── X( 0 )
├── X( 1 )
└── X( 2 )
Similarly, for product states:
from qadence import product_block , rand_product_block
product_block = product_block ( "100" )
rand_product_block = rand_product_block ( n_qubits )
Kro n Block( 0 , 1 , 2 )
├── X( 0 )
├── I( 1 )
└── I( 2 )
Kro n Block( 0 , 1 , 2 )
├── I( 0 )
├── I( 1 )
└── X( 2 )
And GHZ states:
from qadence import ghz_block
ghz_block = ghz_block ( n_qubits )
Chai n Block( 0 , 1 , 2 )
├── H( 0 )
└── Chai n Block( 0 , 1 , 2 )
├── CNOT( 0 , 1 )
└── CNOT( 1 , 2 )
Initial state blocks can simply be chained at the start of a given circuit.
Utility functions
Some state vector utility functions are also available. We can easily create the probability mass function of a given statevector using torch.distributions.Categorical
from qadence import random_state , pmf
n_qubits = 3
state = random_state ( n_qubits )
distribution = pmf ( state )
Ca te gorical(probs : t orch.Size( [ 1 , 8 ] ))
We can also check if a state is normalized:
from qadence import random_state , is_normalized
state = random_state ( n_qubits )
print ( is_normalized ( state ))
Or normalize a state:
import torch
from qadence import normalize , is_normalized
state = torch . tensor ([[ 1 , 1 , 1 , 1 ]], dtype = torch . cdouble )
print ( normalize ( state ))
tens or( [[ 0.5000+0. j , 0.5000+0. j , 0.5000+0. j , 0.5000+0. j ]] )