Skip to content

Solving a 1D ODE

In this tutorial we will show how to use Qadence to solve a basic 1D Ordinary Differential Equation (ODE) with a QNN using Differentiable Quantum Circuits (DQC) 1.

Consider the following non-linear ODE and boundary condition:

\[ \frac{df}{dx}= 5\times(4x^3+x^2-2x-\frac12), \qquad f(0)=0 \]

It admits an exact solution:

\[ f(x)=5\times(x^4+\frac13x^3-x^2-\frac12x) \]

Our goal will be to find this solution for \(x\in[-1, 1]\).

import torch

def dfdx_equation(x: torch.Tensor) -> torch.Tensor:
    """Derivative as per the equation."""
    return 5*(4*x**3 + x**2 - 2*x - 0.5)

For the purpose of this tutorial, we will compute the derivative of the circuit using torch.autograd. The point of the DQC algorithm is to use differentiable circuits with parameter shift rules. In Qadence, PSR is implemented directly as custom overrides of the derivative function in the autograd engine, and thus we can later change the derivative method for the model itself if we wish.

def calc_deriv(outputs: torch.Tensor, inputs: torch.Tensor) -> torch.Tensor:
    """Compute a derivative of model that learns f(x), computes df/dx using torch.autograd."""
    grad = torch.autograd.grad(
        outputs=outputs,
        inputs=inputs,
        grad_outputs = torch.ones_like(inputs),
        create_graph = True,
        retain_graph = True,
    )[0]
    return grad

Defining the loss function

The essential part of solving this problem is to define the right loss function to represent our goal. In this case, we want to define a model that has the capacity to learn the target solution, and we want to minimize: - The derivative of this model in comparison with the exact derivative in the equation; - The output of the model at the boundary in comparison with the value for the boundary condition;

We can write it like so:

# Mean-squared error as the comparison criterion
criterion = torch.nn.MSELoss()

def loss_fn(model: torch.nn.Module, inputs: torch.Tensor) -> torch.Tensor:
    """Loss function encoding the problem to solve."""
    # Equation loss
    model_output = model(inputs)
    deriv_model = calc_deriv(model_output, inputs)
    deriv_exact = dfdx_equation(inputs)
    ode_loss = criterion(deriv_model, deriv_exact)

    # Boundary loss, f(0) = 0
    boundary_model = model(torch.tensor([[0.0]]))
    boundary_exact = torch.tensor([[0.0]])
    boundary_loss = criterion(boundary_model, boundary_exact)

    return ode_loss + boundary_loss

Different loss criterions could be considered, and we could also play with the balance between the sum of the two loss terms. For now, let's proceed with the definition above.

Note that so far we have not used any quantum specific assumption, and we could in principle use the same loss function with a classical neural network.

Defining a QNN with Qadence

Now, we can finally use Qadence to write a QNN. We will use a feature map to encode the input values, a trainable ansatz circuit, and an observable to measure as the output.

from qadence import feature_map, hea, chain
from qadence import QNN, QuantumCircuit, Z
from qadence.types import BasisSet, ReuploadScaling

n_qubits = 3
depth = 3

# Feature map
fm = feature_map(
    n_qubits = n_qubits,
    param = "x",
    fm_type = BasisSet.CHEBYSHEV,
    reupload_scaling = ReuploadScaling.TOWER,
)

# Ansatz
ansatz = hea(n_qubits = n_qubits, depth = depth)

# Observable
observable = Z(0)

circuit = QuantumCircuit(n_qubits, chain(fm, ansatz))
model = QNN(circuit = circuit, observable = observable, inputs = ["x"])

We used a Chebyshev feature map with a tower-like scaling of the input reupload, and a standard hardware-efficient ansatz. You can check the qml constructors tutorial to see how you can customize these components. In the observable, for now we consider the simple case of measuring the magnetization of the first qubit.

from qadence.draw import display

# display(circuit)
%3 cluster_e6fa9e18c8c64a8db3ebb38fa85bd2c6 HEA cluster_bd33bede7ad345da8d9c0d238311db9f Tower Chebyshev FM 525ed2a23cf543c9a4df637b4f9bc0b6 0 2d99ccdbb0cb46e58bc708c241bc8786 RX(1.0*acos(x)) 525ed2a23cf543c9a4df637b4f9bc0b6--2d99ccdbb0cb46e58bc708c241bc8786 63b2d9e47a374044883694fb2e804a0f 1 3cdcedc124d04188ab5567fac4d2050d RX(theta₀) 2d99ccdbb0cb46e58bc708c241bc8786--3cdcedc124d04188ab5567fac4d2050d 267345c662b5455ead6db605e47f7ba2 RY(theta₃) 3cdcedc124d04188ab5567fac4d2050d--267345c662b5455ead6db605e47f7ba2 8a9cf1a821a1444bbfeb701cde22f0d6 RX(theta₆) 267345c662b5455ead6db605e47f7ba2--8a9cf1a821a1444bbfeb701cde22f0d6 5310eac7e7984576811bb707a2c6cafa 8a9cf1a821a1444bbfeb701cde22f0d6--5310eac7e7984576811bb707a2c6cafa 203c456e03ab4616bd0be8eec088111e 5310eac7e7984576811bb707a2c6cafa--203c456e03ab4616bd0be8eec088111e de71c99298244356b3dc065b8030fde4 RX(theta₉) 203c456e03ab4616bd0be8eec088111e--de71c99298244356b3dc065b8030fde4 c28df8cead564b769b13b2990ea5f125 RY(theta₁₂) de71c99298244356b3dc065b8030fde4--c28df8cead564b769b13b2990ea5f125 d6e5f660e03c43149fecd262079ce917 RX(theta₁₅) c28df8cead564b769b13b2990ea5f125--d6e5f660e03c43149fecd262079ce917 7304e32dc5d14ec98498ba543877c273 d6e5f660e03c43149fecd262079ce917--7304e32dc5d14ec98498ba543877c273 750541566af24dacb72d3f4cd5a75a69 7304e32dc5d14ec98498ba543877c273--750541566af24dacb72d3f4cd5a75a69 81791ce57a974517a430163f5a577a8b RX(theta₁₈) 750541566af24dacb72d3f4cd5a75a69--81791ce57a974517a430163f5a577a8b a904eeefb4134435858251da022af9ee RY(theta₂₁) 81791ce57a974517a430163f5a577a8b--a904eeefb4134435858251da022af9ee 171953decf7c400d84dcdd3c76ec742b RX(theta₂₄) a904eeefb4134435858251da022af9ee--171953decf7c400d84dcdd3c76ec742b 4ce637b0fa4448b19155a9cc60119baa 171953decf7c400d84dcdd3c76ec742b--4ce637b0fa4448b19155a9cc60119baa 7cf14157114d4c88adc866a0e6c6f158 4ce637b0fa4448b19155a9cc60119baa--7cf14157114d4c88adc866a0e6c6f158 6d6bec7c74054de5968aecd56c93902c 7cf14157114d4c88adc866a0e6c6f158--6d6bec7c74054de5968aecd56c93902c 65ba91847ad14c6e98bfc3ff50aedc36 c2d3e39d05ee4d4083d62a6a187b6dce RX(2.0*acos(x)) 63b2d9e47a374044883694fb2e804a0f--c2d3e39d05ee4d4083d62a6a187b6dce 0077be8c61024f249794b0bb854f3403 2 50fc46087a854fbda88e0166243d874f RX(theta₁) c2d3e39d05ee4d4083d62a6a187b6dce--50fc46087a854fbda88e0166243d874f 200008bfbe984835b5de8c31ddbb51ca RY(theta₄) 50fc46087a854fbda88e0166243d874f--200008bfbe984835b5de8c31ddbb51ca ef0697f3fd9f4a7589f6412fdda8b279 RX(theta₇) 200008bfbe984835b5de8c31ddbb51ca--ef0697f3fd9f4a7589f6412fdda8b279 5fb92ee522ed4e0faf1ce86c306604fc X ef0697f3fd9f4a7589f6412fdda8b279--5fb92ee522ed4e0faf1ce86c306604fc 5fb92ee522ed4e0faf1ce86c306604fc--5310eac7e7984576811bb707a2c6cafa 26bdeaa0a80946fcb29b4f0298abfea9 5fb92ee522ed4e0faf1ce86c306604fc--26bdeaa0a80946fcb29b4f0298abfea9 bfff404290cd4d9e95c9aa3c82e68668 RX(theta₁₀) 26bdeaa0a80946fcb29b4f0298abfea9--bfff404290cd4d9e95c9aa3c82e68668 2cf2ab0d08424aba8469cbd0b6b2cc81 RY(theta₁₃) bfff404290cd4d9e95c9aa3c82e68668--2cf2ab0d08424aba8469cbd0b6b2cc81 1f462b2412a548fdb6cd1b3bf26a9b99 RX(theta₁₆) 2cf2ab0d08424aba8469cbd0b6b2cc81--1f462b2412a548fdb6cd1b3bf26a9b99 8b2afe2fb1b2412098402c975747b56e X 1f462b2412a548fdb6cd1b3bf26a9b99--8b2afe2fb1b2412098402c975747b56e 8b2afe2fb1b2412098402c975747b56e--7304e32dc5d14ec98498ba543877c273 4f06b6a2968a410a8ad3e5442eea64db 8b2afe2fb1b2412098402c975747b56e--4f06b6a2968a410a8ad3e5442eea64db 6f6d6d83aec8485facf238796b41194e RX(theta₁₉) 4f06b6a2968a410a8ad3e5442eea64db--6f6d6d83aec8485facf238796b41194e a8bb723fd58f43b8825d73532584c11a RY(theta₂₂) 6f6d6d83aec8485facf238796b41194e--a8bb723fd58f43b8825d73532584c11a 74ce1e7069274fabbb885ae621dc5af5 RX(theta₂₅) a8bb723fd58f43b8825d73532584c11a--74ce1e7069274fabbb885ae621dc5af5 ad1c4c0be0b54bdb8b0d85bc56083478 X 74ce1e7069274fabbb885ae621dc5af5--ad1c4c0be0b54bdb8b0d85bc56083478 ad1c4c0be0b54bdb8b0d85bc56083478--4ce637b0fa4448b19155a9cc60119baa 66aeaf9de0a648b8a361d84399b3de12 ad1c4c0be0b54bdb8b0d85bc56083478--66aeaf9de0a648b8a361d84399b3de12 66aeaf9de0a648b8a361d84399b3de12--65ba91847ad14c6e98bfc3ff50aedc36 3028a4f163ca47cd919d74caceae6480 6c7bbf8db4804446bc35ea10f942f76a RX(3.0*acos(x)) 0077be8c61024f249794b0bb854f3403--6c7bbf8db4804446bc35ea10f942f76a 5f2edc1f8799462eaa3cc8fe1d96c3d2 RX(theta₂) 6c7bbf8db4804446bc35ea10f942f76a--5f2edc1f8799462eaa3cc8fe1d96c3d2 4e33c6486a46403597782633222fee29 RY(theta₅) 5f2edc1f8799462eaa3cc8fe1d96c3d2--4e33c6486a46403597782633222fee29 a6af0b1f84f04098a1e9f3af6ddacf1a RX(theta₈) 4e33c6486a46403597782633222fee29--a6af0b1f84f04098a1e9f3af6ddacf1a 9df2fd94d85a48cbb69360992d47ae11 a6af0b1f84f04098a1e9f3af6ddacf1a--9df2fd94d85a48cbb69360992d47ae11 394688d83e25430599c061f1abcb6b28 X 9df2fd94d85a48cbb69360992d47ae11--394688d83e25430599c061f1abcb6b28 394688d83e25430599c061f1abcb6b28--26bdeaa0a80946fcb29b4f0298abfea9 82110ff9d5bf4e00a7e59cf93b959ccf RX(theta₁₁) 394688d83e25430599c061f1abcb6b28--82110ff9d5bf4e00a7e59cf93b959ccf cb6755dcc31f4f1b9189f6e6224a2f51 RY(theta₁₄) 82110ff9d5bf4e00a7e59cf93b959ccf--cb6755dcc31f4f1b9189f6e6224a2f51 c861c51e20be48f8850b5604e37a1dbe RX(theta₁₇) cb6755dcc31f4f1b9189f6e6224a2f51--c861c51e20be48f8850b5604e37a1dbe 3b810734a2284089b6bf64d8aae6d824 c861c51e20be48f8850b5604e37a1dbe--3b810734a2284089b6bf64d8aae6d824 f0b73f6c9f2941efb01635c6a15aece3 X 3b810734a2284089b6bf64d8aae6d824--f0b73f6c9f2941efb01635c6a15aece3 f0b73f6c9f2941efb01635c6a15aece3--4f06b6a2968a410a8ad3e5442eea64db 4821edd0e0d64b81a4783c5212e8d083 RX(theta₂₀) f0b73f6c9f2941efb01635c6a15aece3--4821edd0e0d64b81a4783c5212e8d083 d4a0e611e258493894df96c107799182 RY(theta₂₃) 4821edd0e0d64b81a4783c5212e8d083--d4a0e611e258493894df96c107799182 a22452c5647d4935b98797d674fc59f7 RX(theta₂₆) d4a0e611e258493894df96c107799182--a22452c5647d4935b98797d674fc59f7 0bc319362e2940e7aaaf6248a603deac a22452c5647d4935b98797d674fc59f7--0bc319362e2940e7aaaf6248a603deac 40ab5d3d3a9f455c8b8be856e4318b89 X 0bc319362e2940e7aaaf6248a603deac--40ab5d3d3a9f455c8b8be856e4318b89 40ab5d3d3a9f455c8b8be856e4318b89--66aeaf9de0a648b8a361d84399b3de12 40ab5d3d3a9f455c8b8be856e4318b89--3028a4f163ca47cd919d74caceae6480

Training the model

Now that the model is defined we can proceed with the training. the QNN class can be used like any other torch.nn.Module. Here we write a simple training loop, but you can also look at the ml tools tutorial to use the convenience training functions that Qadence provides.

To train the model, we will select a random set of collocation points uniformly distributed within \(-1.0< x <1.0\) and compute the loss function for those points.

n_epochs = 200
n_points = 10

xmin = -0.99
xmax = 0.99

optimizer = torch.optim.Adam(model.parameters(), lr = 0.1)

for epoch in range(n_epochs):
    optimizer.zero_grad()

    # Training data. We unsqueeze essentially making each batch have a single x value.
    x_train = (xmin + (xmax-xmin)*torch.rand(n_points, requires_grad = True)).unsqueeze(1)

    loss = loss_fn(inputs = x_train, model = model)
    loss.backward()
    optimizer.step()

Note the values of \(x\) are only picked from \(x\in[-0.99, 0.99]\) since we are using a Chebyshev feature map, and derivative of \(\text{acos}(x)\) diverges at \(-1\) and \(1\).

Plotting the results

import matplotlib.pyplot as plt

def f_exact(x: torch.Tensor) -> torch.Tensor:
    return 5*(x**4 + (1/3)*x**3 - x**2 - 0.5*x)

x_test = torch.arange(xmin, xmax, step = 0.01).unsqueeze(1)

result_exact = f_exact(x_test).flatten()

result_model = model(x_test).flatten().detach()

plt.plot(x_test, result_exact, label = "Exact solution")
plt.plot(x_test, result_model, label = " Trained model")
2025-03-05T09:50:53.593010 image/svg+xml Matplotlib v3.10.1, https://matplotlib.org/

Clearly, the result is not optimal.

Improving the solution

One point to consider when defining the QNN is the possible output range, which is bounded by the spectrum of the chosen observable. For the magnetization of a single qubit, this means that the output is bounded between -1 and 1, which we can clearly see in the plot.

One option would be to define the observable as the total magnetization over all qubits, which would allow a range of -3 to 3.

from qadence import add

observable = add(Z(i) for i in range(n_qubits))

model = QNN(circuit = circuit, observable = observable, inputs = ["x"])

optimizer = torch.optim.Adam(model.parameters(), lr = 0.1)

for epoch in range(n_epochs):
    optimizer.zero_grad()

    # Training data
    x_train = (xmin + (xmax-xmin)*torch.rand(n_points, requires_grad = True)).unsqueeze(1)

    loss = loss_fn(inputs = x_train, model = model)
    loss.backward()
    optimizer.step()

And we again plot the result:

x_test = torch.arange(xmin, xmax, step = 0.01).unsqueeze(1)

result_exact = f_exact(x_test).flatten()

result_model = model(x_test).flatten().detach()

plt.plot(x_test, result_exact, label = "Exact solution")
plt.plot(x_test, result_model, label = "Trained model")
2025-03-05T09:51:00.786114 image/svg+xml Matplotlib v3.10.1, https://matplotlib.org/

References