Skip to content

Solving MaxCut with QAOA

This tutorial shows how to solve the maximum cut (MaxCut) combinatorial optimization problem on a graph using the Quantum Approximate Optimization Algorithm (QAOA), first introduced by Farhi et al. in 2014 1.

Given an arbitrary graph, the MaxCut problem consists in finding a graph cut which partitions the nodes into two disjoint sets, such that the number of edges in the cut is maximized. This is a very common combinatorial optimization problem known to be computationally hard (NP-hard).

The graph used for this tutorial is an unweighted graph randomly generated using the networkx library with a certain probability \(p\) of having an edge between two arbitrary nodes (known as Erdős–Rényi graph).

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import random

# ensure reproducibility
seed = 42
np.random.seed(seed)
random.seed(seed)

# Create random graph
n_nodes = 4
edge_prob = 0.8
graph = nx.gnp_random_graph(n_nodes, edge_prob)

nx.draw(graph)
2025-03-05T09:51:00.864332 image/svg+xml Matplotlib v3.10.1, https://matplotlib.org/

The goal of the MaxCut algorithm is to maximize the following cost function:

\[\mathcal{C}(p) = \sum_{\alpha}^m \mathcal{C}_{\alpha}(p)\]

where \(p\) is a given cut of the graph, \(\alpha\) is an index over the edges and \(\mathcal{C}_{\alpha}(p)\) is written such that if the nodes connected by the \(\alpha\) edge are in the same set, it returns \(0\), otherwise it returns \(1\). We will represent a cut \(p\) as a bitstring of length \(N\), where \(N\) is the number of nodes, and where the bit in position \(i\) shows to which partition node \(i\) belongs. We assign value 0 to one of the partitions defined by the cut and 1 to the other. Since this choice is arbitrary, every cut is represented by two bitstrings, e.g. "0011" and "1100" are equivalent.

Since in this tutorial we are only dealing with small graphs, we can find the maximum cut by brute force to make sure QAOA works as intended.

# Function to calculate the cost associated with a cut
def calculate_cost(cut: str, graph: nx.graph) -> float:
    """Returns the cost of a given cut (represented by a bitstring)"""
    cost = 0
    for edge in graph.edges():
        (i, j) = edge
        if cut[i] != cut[j]:
            cost += 1
    return cost


# Function to get a binary representation of an int
get_binary = lambda x, n: format(x, "b").zfill(n)

# List of all possible cuts
all_possible_cuts = [bin(k)[2:].rjust(n_nodes, "0") for k in range(2**n_nodes)]

# List with the costs associated to each cut
all_costs = [calculate_cost(cut, graph) for cut in all_possible_cuts]

# Get the maximum cost
maxcost = max(all_costs)

# Get all cuts that correspond to the maximum cost
maxcuts = [get_binary(i, n_nodes) for i, j in enumerate(all_costs) if j == maxcost]
print(f"The maximum cut is represented by the bitstrings {maxcuts}, with a cost of {maxcost}")
The maximum cut is represented by the bitstrings ['0011', '0101', '0110', '1001', '1010', '1100'], with a cost of 4

The QAOA quantum circuit

The Max-Cut problem can be solved by using the QAOA algorithm. QAOA belongs to the class of Variational Quantum Algorithms (VQAs), which means that its quantum circuit contains a certain number of parametrized quantum gates that need to be optimized with a classical optimizer. The QAOA circuit is composed of two operators:

  • The cost operator \(U_c\): a circuit generated by the cost Hamiltonian which encodes the cost function described above into a quantum circuit. The solution to the optimization problem is encoded in the ground state of the cost Hamiltonian \(H_c\). The cost operator is simply the evolution of the cost Hamiltonian parametrized by a variational parameter \(\gamma\) so that \(U_c = e^{i\gamma H_c}.\)
  • The mixing operator \(U_b\): a simple set of single-qubit rotations with adjustable angles which are tuned during the classical optimization loop to minimize the cost

The cost Hamiltonian of the MaxCut problem can be written as:

\[H_c = \frac12 \sum_{\langle i,j\rangle} (\mathbb{1} - Z_iZ_j)\]

where \(\langle i,j\rangle\) represents the edge between nodes \(i\) and \(j\). The solution of the MaxCut problem is encoded in the ground state of the above Hamiltonian.

The QAOA quantum circuit consists of a number of layers, each layer containing a cost and a mixing operator. Below, the QAOA quantum circuit is defined using qadence operations. First, a layer of Hadamard gates is applied to all qubits to prepare the initial state \(|+\rangle ^{\otimes n}\). The cost operator of each layer can be built "manually", implementing the \(e^{iZZ\gamma}\) terms with CNOTs and a \(\rm{RZ}(2\gamma)\) rotation, or it can also be automatically decomposed into digital single and two-qubits operations via the .digital_decomposition() method. The decomposition is exact since the Hamiltonian generator is diagonal.

from qadence import tag, kron, chain, RX, RZ, Z, H, CNOT, I, add
from qadence import HamEvo, QuantumCircuit, Parameter

n_qubits = graph.number_of_nodes()
n_edges = graph.number_of_edges()
n_layers = 6

# Generate the cost Hamiltonian
zz_ops = add(Z(edge[0]) @ Z(edge[1]) for edge in graph.edges)
cost_ham = 0.5 * (n_edges * kron(I(i) for i in range(n_qubits)) - zz_ops)


# QAOA circuit
def build_qaoa_circuit(n_qubits, n_layers, graph):
    layers = []
    # Layer of Hadamards
    initial_layer = kron(H(i) for i in range(n_qubits))
    layers.append(initial_layer)
    for layer in range(n_layers):

        # cost layer with digital decomposition
        # cost_layer = HamEvo(cost_ham, f"g{layer}").digital_decomposition(approximation="basic")
        cost_layer = []
        for edge in graph.edges():
            (q0, q1) = edge
            zz_term = chain(
                CNOT(q0, q1),
                RZ(q1, Parameter(f"g{layer}")),
                CNOT(q0, q1),
            )
            cost_layer.append(zz_term)
        cost_layer = chain(*cost_layer)
        cost_layer = tag(cost_layer, "cost")

        # mixing layer with single qubit rotations
        mixing_layer = kron(RX(i, f"b{layer}") for i in range(n_qubits))
        mixing_layer = tag(mixing_layer, "mixing")

        # putting all together in a single ChainBlock
        layers.append(chain(cost_layer, mixing_layer))

    final_b = chain(*layers)
    return QuantumCircuit(n_qubits, final_b)


circuit = build_qaoa_circuit(n_qubits, n_layers, graph)

# Print a single layer of the circuit
%3 cluster_e8218ef431814f38a6f92f9b64db9340 mixing cluster_e2dc04e17fb9419b889f5cfeb9bd438a cost 23315067f3154dc6ab51781528fc7ef1 0 1d63d61d1e6949febabf4d38c02d36d8 H 23315067f3154dc6ab51781528fc7ef1--1d63d61d1e6949febabf4d38c02d36d8 9e4e02e38ff54e218dedea44d0a41cf7 1 16b5ad5daa2e403f998bd7029951aa3e 1d63d61d1e6949febabf4d38c02d36d8--16b5ad5daa2e403f998bd7029951aa3e 3f32f9f5da074873a2cab6c0a2acf17b 16b5ad5daa2e403f998bd7029951aa3e--3f32f9f5da074873a2cab6c0a2acf17b d0437ddb661948e28b0331d5e622cde9 3f32f9f5da074873a2cab6c0a2acf17b--d0437ddb661948e28b0331d5e622cde9 f2b3310b1b274772b40822d36c494c33 d0437ddb661948e28b0331d5e622cde9--f2b3310b1b274772b40822d36c494c33 4ffe80080fd541478b9ba5bf389053f3 f2b3310b1b274772b40822d36c494c33--4ffe80080fd541478b9ba5bf389053f3 056c986d2dad4d9487cb7738e5358f1c 4ffe80080fd541478b9ba5bf389053f3--056c986d2dad4d9487cb7738e5358f1c e03d0121670a406f8a49983e591461a6 056c986d2dad4d9487cb7738e5358f1c--e03d0121670a406f8a49983e591461a6 16b34abd2b554516970c0ffdcba66268 e03d0121670a406f8a49983e591461a6--16b34abd2b554516970c0ffdcba66268 66864229c3f943e99b58fa54c02dca17 16b34abd2b554516970c0ffdcba66268--66864229c3f943e99b58fa54c02dca17 489750c1b3b848f8be0c4dd35191821b 66864229c3f943e99b58fa54c02dca17--489750c1b3b848f8be0c4dd35191821b db2983fdfd4d47b8bc8f77e80e2f044c 489750c1b3b848f8be0c4dd35191821b--db2983fdfd4d47b8bc8f77e80e2f044c 5dcc4bfa83d3480a8da3a096e483243c db2983fdfd4d47b8bc8f77e80e2f044c--5dcc4bfa83d3480a8da3a096e483243c 767e2f620f91485da8d9d326eaca4133 5dcc4bfa83d3480a8da3a096e483243c--767e2f620f91485da8d9d326eaca4133 36d7302b9530454fb8a4ccd8ac116eff 767e2f620f91485da8d9d326eaca4133--36d7302b9530454fb8a4ccd8ac116eff a82f3e26c00743b3b9a5eddcda660d6a 36d7302b9530454fb8a4ccd8ac116eff--a82f3e26c00743b3b9a5eddcda660d6a 500215abcec5478bb06ced0f7a97e090 a82f3e26c00743b3b9a5eddcda660d6a--500215abcec5478bb06ced0f7a97e090 424c3673bed14155bab58a7e7ea44347 500215abcec5478bb06ced0f7a97e090--424c3673bed14155bab58a7e7ea44347 8710617a787640f6b65a2479ee5fe53c 424c3673bed14155bab58a7e7ea44347--8710617a787640f6b65a2479ee5fe53c 27d646d325c5430abc65d3c2dbf536fd RX(b0) 8710617a787640f6b65a2479ee5fe53c--27d646d325c5430abc65d3c2dbf536fd 63b7cd3c1d3e461b94a61b30b40aac65 27d646d325c5430abc65d3c2dbf536fd--63b7cd3c1d3e461b94a61b30b40aac65 0706dc27f6b14b14ab94664424c6ede6 49f3e4bd3ec34dd797f041be7b441b70 H 9e4e02e38ff54e218dedea44d0a41cf7--49f3e4bd3ec34dd797f041be7b441b70 844ea0988d1448208882c8d0514cee1f 2 d7abd6591fd9443bab8d534808b56663 X 49f3e4bd3ec34dd797f041be7b441b70--d7abd6591fd9443bab8d534808b56663 d7abd6591fd9443bab8d534808b56663--16b5ad5daa2e403f998bd7029951aa3e ce671dc5dc8c457a87a00e4d980a647b RZ(g0) d7abd6591fd9443bab8d534808b56663--ce671dc5dc8c457a87a00e4d980a647b b0520b76db1944e4ad5a3f67420a0484 X ce671dc5dc8c457a87a00e4d980a647b--b0520b76db1944e4ad5a3f67420a0484 b0520b76db1944e4ad5a3f67420a0484--d0437ddb661948e28b0331d5e622cde9 200b71d1485a4e56964ee972a23a0c05 b0520b76db1944e4ad5a3f67420a0484--200b71d1485a4e56964ee972a23a0c05 c2dee0cd1bd7438ea221bb7e2211f4e6 200b71d1485a4e56964ee972a23a0c05--c2dee0cd1bd7438ea221bb7e2211f4e6 f7b7dea399d14de2a6f1dfec6d75971e c2dee0cd1bd7438ea221bb7e2211f4e6--f7b7dea399d14de2a6f1dfec6d75971e 045c05d426c947a584b546ef18af3e20 f7b7dea399d14de2a6f1dfec6d75971e--045c05d426c947a584b546ef18af3e20 e60b9a1f1463496587bdd13530db1b2c 045c05d426c947a584b546ef18af3e20--e60b9a1f1463496587bdd13530db1b2c a06035f9e454499494e95b760f1a6969 e60b9a1f1463496587bdd13530db1b2c--a06035f9e454499494e95b760f1a6969 8266e32dbf5e4c41a80f5fb00d5b4689 a06035f9e454499494e95b760f1a6969--8266e32dbf5e4c41a80f5fb00d5b4689 ad6abdfa632a4fd4abe58db942fb5df1 8266e32dbf5e4c41a80f5fb00d5b4689--ad6abdfa632a4fd4abe58db942fb5df1 d96245607a784028ba5932e2ad9414e4 ad6abdfa632a4fd4abe58db942fb5df1--d96245607a784028ba5932e2ad9414e4 b260d96660394fb59ea358b125329699 d96245607a784028ba5932e2ad9414e4--b260d96660394fb59ea358b125329699 534e159b3dd04889893c4ac6954b12e9 b260d96660394fb59ea358b125329699--534e159b3dd04889893c4ac6954b12e9 1c9ab1290d8f4689b5eb4af0e3f35212 534e159b3dd04889893c4ac6954b12e9--1c9ab1290d8f4689b5eb4af0e3f35212 30fcddfd62344d379e21c8af350ade00 1c9ab1290d8f4689b5eb4af0e3f35212--30fcddfd62344d379e21c8af350ade00 99ad852f9a7b471494d593ba93d42d7d 30fcddfd62344d379e21c8af350ade00--99ad852f9a7b471494d593ba93d42d7d e7054e6343fe4f24b64cd02361cdda96 99ad852f9a7b471494d593ba93d42d7d--e7054e6343fe4f24b64cd02361cdda96 4c69836bc6df4141a76d23591ef7e2c6 RX(b0) e7054e6343fe4f24b64cd02361cdda96--4c69836bc6df4141a76d23591ef7e2c6 4c69836bc6df4141a76d23591ef7e2c6--0706dc27f6b14b14ab94664424c6ede6 50869c96f43b4f73b705781f94849355 e40a0891af13409ea80ba8934ccc6ed9 H 844ea0988d1448208882c8d0514cee1f--e40a0891af13409ea80ba8934ccc6ed9 5472cedfc5c54a6bbc6b36be202702ee 3 a23efa00a276410bad67dd1e98fa886c e40a0891af13409ea80ba8934ccc6ed9--a23efa00a276410bad67dd1e98fa886c 893d55f0cef1423286da20dfc57ac399 a23efa00a276410bad67dd1e98fa886c--893d55f0cef1423286da20dfc57ac399 e07220f56b154b72b0bb451cdaee794b 893d55f0cef1423286da20dfc57ac399--e07220f56b154b72b0bb451cdaee794b 178c0c51c7004a0c910d0c31c2df5399 X e07220f56b154b72b0bb451cdaee794b--178c0c51c7004a0c910d0c31c2df5399 178c0c51c7004a0c910d0c31c2df5399--f2b3310b1b274772b40822d36c494c33 2c06da1e2e124a85ae130e5c40af7ea2 RZ(g0) 178c0c51c7004a0c910d0c31c2df5399--2c06da1e2e124a85ae130e5c40af7ea2 847ccec559f2454dbba5734afa6823da X 2c06da1e2e124a85ae130e5c40af7ea2--847ccec559f2454dbba5734afa6823da 847ccec559f2454dbba5734afa6823da--056c986d2dad4d9487cb7738e5358f1c 0237218f7e7d465ea42bba367d634850 847ccec559f2454dbba5734afa6823da--0237218f7e7d465ea42bba367d634850 6a1333ee9d5f470fb01285781530090d 0237218f7e7d465ea42bba367d634850--6a1333ee9d5f470fb01285781530090d d69608b28b52491d831ef32e733b0a72 6a1333ee9d5f470fb01285781530090d--d69608b28b52491d831ef32e733b0a72 306164281fe74e0690fb9621c7b09667 X d69608b28b52491d831ef32e733b0a72--306164281fe74e0690fb9621c7b09667 306164281fe74e0690fb9621c7b09667--8266e32dbf5e4c41a80f5fb00d5b4689 509847c4f0204d79a8c6540e6de34b5d RZ(g0) 306164281fe74e0690fb9621c7b09667--509847c4f0204d79a8c6540e6de34b5d 32a47f9d986f4d808070b4edecd0d1b1 X 509847c4f0204d79a8c6540e6de34b5d--32a47f9d986f4d808070b4edecd0d1b1 32a47f9d986f4d808070b4edecd0d1b1--d96245607a784028ba5932e2ad9414e4 42ae4986dcb148c88cac34315ebd3020 32a47f9d986f4d808070b4edecd0d1b1--42ae4986dcb148c88cac34315ebd3020 25c48a2064c846af96d61b88dca011df 42ae4986dcb148c88cac34315ebd3020--25c48a2064c846af96d61b88dca011df a21d4c893ee7425dae4fe28c05623bdc 25c48a2064c846af96d61b88dca011df--a21d4c893ee7425dae4fe28c05623bdc f32ff3da51624cf5b670ba7cff48c10a a21d4c893ee7425dae4fe28c05623bdc--f32ff3da51624cf5b670ba7cff48c10a 0c9e8271733c42709dd96f918bb98c5e f32ff3da51624cf5b670ba7cff48c10a--0c9e8271733c42709dd96f918bb98c5e 06ebee563b8740258e80530b0440b4c2 0c9e8271733c42709dd96f918bb98c5e--06ebee563b8740258e80530b0440b4c2 e6a486c2a42f4ce3af64846bbdcd7236 RX(b0) 06ebee563b8740258e80530b0440b4c2--e6a486c2a42f4ce3af64846bbdcd7236 e6a486c2a42f4ce3af64846bbdcd7236--50869c96f43b4f73b705781f94849355 7e8ea073166b4aad817b4104bc61f0a6 2f3db57e95dd445f8aee80917933c22e H 5472cedfc5c54a6bbc6b36be202702ee--2f3db57e95dd445f8aee80917933c22e b2804e1634c644d39dc5d65de6bd4f21 2f3db57e95dd445f8aee80917933c22e--b2804e1634c644d39dc5d65de6bd4f21 5980160eda4d4a9ca7876e272116aafe b2804e1634c644d39dc5d65de6bd4f21--5980160eda4d4a9ca7876e272116aafe 30d905e6819648e39e3367c04c6f40b0 5980160eda4d4a9ca7876e272116aafe--30d905e6819648e39e3367c04c6f40b0 26b87a5b434745dba2da1cf7a8fec68f 30d905e6819648e39e3367c04c6f40b0--26b87a5b434745dba2da1cf7a8fec68f 757ec39a3f4949768e2ba5bf60c20203 26b87a5b434745dba2da1cf7a8fec68f--757ec39a3f4949768e2ba5bf60c20203 a35b75b410cf4aec86f15a43b8415dd6 757ec39a3f4949768e2ba5bf60c20203--a35b75b410cf4aec86f15a43b8415dd6 b7360003caa546a1a781e2e318a7baba X a35b75b410cf4aec86f15a43b8415dd6--b7360003caa546a1a781e2e318a7baba b7360003caa546a1a781e2e318a7baba--e03d0121670a406f8a49983e591461a6 119fc851aecd4b35a7b9bdb7642d2b77 RZ(g0) b7360003caa546a1a781e2e318a7baba--119fc851aecd4b35a7b9bdb7642d2b77 a51622ec128d49bc8a75af987414f8ae X 119fc851aecd4b35a7b9bdb7642d2b77--a51622ec128d49bc8a75af987414f8ae a51622ec128d49bc8a75af987414f8ae--66864229c3f943e99b58fa54c02dca17 b96d4241ea1b432c99d5061bf335470b a51622ec128d49bc8a75af987414f8ae--b96d4241ea1b432c99d5061bf335470b 8d509d9eb70244199cddac5510f7029b b96d4241ea1b432c99d5061bf335470b--8d509d9eb70244199cddac5510f7029b a523fd8cca7d4480b8beb99771903b8c 8d509d9eb70244199cddac5510f7029b--a523fd8cca7d4480b8beb99771903b8c 81aa8c7d14314e74a38d20708af35d4e X a523fd8cca7d4480b8beb99771903b8c--81aa8c7d14314e74a38d20708af35d4e 81aa8c7d14314e74a38d20708af35d4e--b260d96660394fb59ea358b125329699 d1340f9848ec4bee88aad2d64e831151 RZ(g0) 81aa8c7d14314e74a38d20708af35d4e--d1340f9848ec4bee88aad2d64e831151 b375a71f369947fd8994f7f1d47e984c X d1340f9848ec4bee88aad2d64e831151--b375a71f369947fd8994f7f1d47e984c b375a71f369947fd8994f7f1d47e984c--1c9ab1290d8f4689b5eb4af0e3f35212 a78c08c67e064bcea7301e7255c15740 X b375a71f369947fd8994f7f1d47e984c--a78c08c67e064bcea7301e7255c15740 a78c08c67e064bcea7301e7255c15740--f32ff3da51624cf5b670ba7cff48c10a 4d25ce517a6e490c952c46a05e375aa9 RZ(g0) a78c08c67e064bcea7301e7255c15740--4d25ce517a6e490c952c46a05e375aa9 204a51d79af8412ba2194338d1b2ca2c X 4d25ce517a6e490c952c46a05e375aa9--204a51d79af8412ba2194338d1b2ca2c 204a51d79af8412ba2194338d1b2ca2c--06ebee563b8740258e80530b0440b4c2 737e6f8e2f65437695fb19bfd0669808 RX(b0) 204a51d79af8412ba2194338d1b2ca2c--737e6f8e2f65437695fb19bfd0669808 737e6f8e2f65437695fb19bfd0669808--7e8ea073166b4aad817b4104bc61f0a6

Train the QAOA circuit to solve MaxCut

Given the QAOA circuit above, one can construct the associated Qadence QuantumModel and train it using standard gradient based optimization.

The loss function to be minimized reads:

\[\mathcal{L} =-\langle \psi | H_c| \psi \rangle= -\frac12 \sum_{\langle i,j\rangle} \left(1 - \langle \psi | Z_i Z_j | \psi \rangle \right)\]

where \(|\psi\rangle(\beta, \gamma)\) is the wavefunction obtained by running the QAQA quantum circuit and the sum runs over the edges of the graph \(\langle i,j\rangle\).

import torch
from qadence import QuantumModel

torch.manual_seed(seed)


def loss_function(model: QuantumModel):
    # The loss corresponds to the expectation
    # value of the cost Hamiltonian
    return -1.0 * model.expectation().squeeze()


# initialize the parameters to random values
model = QuantumModel(circuit, observable=cost_ham)
model.reset_vparams(torch.rand(model.num_vparams))
initial_loss = loss_function(model)
print(f"Initial loss: {initial_loss}")

# train the model
n_epochs = 100
lr = 0.1

optimizer = torch.optim.Adam(model.parameters(), lr=lr)

for i in range(n_epochs):
    optimizer.zero_grad()
    loss = loss_function(model)
    loss.backward()
    optimizer.step()
    if (i + 1) % (n_epochs // 10) == 0:
        print(f"MaxCut cost at iteration {i+1}: {-loss.item()}")
Initial loss: -2.1782381363858794
MaxCut cost at iteration 10: 3.7470706807026417
MaxCut cost at iteration 20: 3.8378810288930216
MaxCut cost at iteration 30: 3.9424197899236133
MaxCut cost at iteration 40: 3.9981256255766002
MaxCut cost at iteration 50: 3.996470528508214
MaxCut cost at iteration 60: 3.9991374608876606
MaxCut cost at iteration 70: 3.9994678542919555
MaxCut cost at iteration 80: 3.999872558672829
MaxCut cost at iteration 90: 3.9999475834121063
MaxCut cost at iteration 100: 3.9999793311641003

Qadence offers some convenience functions to implement this training loop with advanced logging and metrics track features. You can refer to this tutorial for more details.

Results

Given the trained quantum model, one needs to sample the resulting quantum state to recover the bitstring with the highest probability which corresponds to the maximum cut of the graph.

samples = model.sample(n_shots=100)[0]
most_frequent = max(samples, key=samples.get)

print(f"Most frequently sampled bitstring corresponding to the maximum cut: {most_frequent}")

# let's now draw the cut obtained with the QAOA procedure
colors = []
labels = {}
for node, b in zip(graph.nodes(), most_frequent):
    colors.append("green") if int(b) == 0 else colors.append("red")
    labels[node] = "A" if int(b) == 0 else "B"

nx.draw_networkx(graph, node_color=colors, with_labels=True, labels=labels)
Most frequently sampled bitstring corresponding to the maximum cut: 1001 2025-03-05T09:51:05.064967 image/svg+xml Matplotlib v3.10.1, https://matplotlib.org/

References


  1. Farhi et al. - A Quantum Approximate Optimization Algorithm