Skip to content

Block system

Quantum programs in Qadence are constructed using a block-system, with an emphasis on composability of primitive blocks to obtain larger, composite blocks. This functional approach is different from other frameworks which follow a more object-oriented way to construct circuits and express programs.

Primitive blocks

A PrimitiveBlock represents a digital or an analog time-evolution quantum operation applied to a qubit support. Programs can always be decomposed down into a sequence of PrimitiveBlock elements.

Two canonical examples of digital primitive blocks are the parametrized RX and the CNOT gates:

from qadence import chain, RX, CNOT

rx = RX(0, 0.5)
cnot = CNOT(0, 1)

block = chain(rx, cnot)
%3 01790e7a9fa7414abdd117a862b6eee6 0 61f86cbe07b64ca8ab5c948373e3c363 RX(0.5) 01790e7a9fa7414abdd117a862b6eee6--61f86cbe07b64ca8ab5c948373e3c363 dbe41066c07447dba3ba2118e8e2cb94 1 cb0a427cbb204b59bf64fb73ad58dd12 61f86cbe07b64ca8ab5c948373e3c363--cb0a427cbb204b59bf64fb73ad58dd12 cbf3fa2868984cecb4fee36aff9c355b cb0a427cbb204b59bf64fb73ad58dd12--cbf3fa2868984cecb4fee36aff9c355b 9413e7927fa44a70838ce6a8ccc54206 f127552bf4144b96b4e728d2d9a9f346 dbe41066c07447dba3ba2118e8e2cb94--f127552bf4144b96b4e728d2d9a9f346 859fa33d47914de5934bba2d28dd9dfe X f127552bf4144b96b4e728d2d9a9f346--859fa33d47914de5934bba2d28dd9dfe 859fa33d47914de5934bba2d28dd9dfe--cb0a427cbb204b59bf64fb73ad58dd12 859fa33d47914de5934bba2d28dd9dfe--9413e7927fa44a70838ce6a8ccc54206

A list of all available primitive operations can be found here.

How to visualize blocks

There are two ways to display blocks in a Python interpreter: either as a tree in ASCII format using print:

from qadence import X, Y, kron

kron_block = kron(X(0), Y(1))
print(kron_block)
KronBlock(0,1)
├── X(0)
└── Y(1)

Or using the visualization package:

from qadence import X, Y, kron
from qadence.draw import display

kron_block = kron(X(0), Y(1))
# display(kron_block)
%3 87473df5cc06495490969be3d756aea5 0 e263c142b0114f6dbc1321e1153a5561 X 87473df5cc06495490969be3d756aea5--e263c142b0114f6dbc1321e1153a5561 f88dcf20995a4465a4d4961b8c27dacc 1 827bd7596adf47958d9b8f4a189dafc8 e263c142b0114f6dbc1321e1153a5561--827bd7596adf47958d9b8f4a189dafc8 76b63d4f3a2c4b38ace6d3f49b73a3f5 c0b7c25c28e14a03b23151f952c429dc Y f88dcf20995a4465a4d4961b8c27dacc--c0b7c25c28e14a03b23151f952c429dc c0b7c25c28e14a03b23151f952c429dc--76b63d4f3a2c4b38ace6d3f49b73a3f5

Composite Blocks

Programs can be expressed by composing blocks to result in a larger CompositeBlock using three fundamental operations: chain, kron, and add.

  • chain applies a set of blocks in sequence, which can have overlapping qubit supports, and results in a ChainBlock type. It is akin to applying a matrix product of the sub-blocks, and can also be used with the * operator.
  • kron applies a set of blocks in parallel, requiring disjoint qubit support, and results in a KronBlock type. This is akin to applying a tensor product of the sub-blocks, and can also be used with the @ operator.
  • add performs a direct sum of the operators, and results in an AddBlock type. Blocks constructed this way are typically non-unitary, as is the case for Hamiltonians which can be constructed through sums of Pauli strings. Addition can also be performed directly with the + operator.
from qadence import X, Y, chain, kron

chain_0 = chain(X(0), Y(0))
chain_1 = chain(X(1), Y(1))

kron_block = kron(chain_0, chain_1)
%3 35c7915fc33945aca91182f4053a62ee 0 95d7b161568c430ba94acc7d8bb68913 X 35c7915fc33945aca91182f4053a62ee--95d7b161568c430ba94acc7d8bb68913 d3da5838df2240e59e458e300d7b5889 1 5d02af7b2df044b192807bafd30e01f5 Y 95d7b161568c430ba94acc7d8bb68913--5d02af7b2df044b192807bafd30e01f5 037eada242a144b994fc19ad07d977f6 5d02af7b2df044b192807bafd30e01f5--037eada242a144b994fc19ad07d977f6 391fc32ea1c142b9ac851c7d1648f581 cfbee1fe43e34cc88f7bbd2229ed2bd9 X d3da5838df2240e59e458e300d7b5889--cfbee1fe43e34cc88f7bbd2229ed2bd9 3b358174e7a148dd912a3586dd9ced74 Y cfbee1fe43e34cc88f7bbd2229ed2bd9--3b358174e7a148dd912a3586dd9ced74 3b358174e7a148dd912a3586dd9ced74--391fc32ea1c142b9ac851c7d1648f581

All composition functions support list comprehension syntax. Below we exemplify the creation of an XY Hamiltonian for qubits laid out on a line.

from qadence import X, Y, add

def xy_int(i: int, j: int):
    return (1/2) * (X(i)@X(j) + Y(i)@Y(j))

n_qubits = 3

xy_ham = add(xy_int(i, i+1) for i in range(n_qubits-1))
AddBlock(0,1,2)
├── [mul: 0.500] 
   └── AddBlock(0,1)
       ├── KronBlock(0,1)
          ├── X(0)
          └── X(1)
       └── KronBlock(0,1)
           ├── Y(0)
           └── Y(1)
└── [mul: 0.500] 
    └── AddBlock(1,2)
        ├── KronBlock(1,2)
           ├── X(1)
           └── X(2)
        └── KronBlock(1,2)
            ├── Y(1)
            └── Y(2)

Qadence blocks can be directly translated to matrix form by calling block.tensor(). Note that first dimension is the batch dimension, following PyTorch conventions. This becomes relevant if the block are parameterized and batched input values are passed, as we will see later.

from qadence import X, Y

xy = (1/2) * (X(0)@X(1) + Y(0)@Y(1))

print(xy.tensor().real)
tensor([[[0., 0., 0., 0.],
         [0., 0., 1., 0.],
         [0., 1., 0., 0.],
         [0., 0., 0., 0.]]])

For a final example of the flexibility of functional block composition, below is an implementation of the Quantum Fourier Transform on an arbitrary qubit support.

from qadence import H, CPHASE, PI, chain, kron

def qft_layer(qs: tuple, l: int):
    cphases = chain(CPHASE(qs[j], qs[l], PI/2**(j-l)) for j in range(l+1, len(qs)))
    return H(qs[l]) * cphases

def qft(qs: tuple):
    return chain(qft_layer(qs, l) for l in range(len(qs)))
%3 8b0f546ed9a54cf1a1aea3883381f7e6 0 b8223641b3054a74aa0a58dd2176f037 H 8b0f546ed9a54cf1a1aea3883381f7e6--b8223641b3054a74aa0a58dd2176f037 ae1f1d5e45714fbd9239432971f76089 1 da0ccd7ddc524cb1b92a912a05cad9e6 PHASE(1.571) b8223641b3054a74aa0a58dd2176f037--da0ccd7ddc524cb1b92a912a05cad9e6 2e53d9d984384a3ab687e5fe84efdae6 PHASE(0.785) da0ccd7ddc524cb1b92a912a05cad9e6--2e53d9d984384a3ab687e5fe84efdae6 8add5cbf38e1417db079ce8e07657198 da0ccd7ddc524cb1b92a912a05cad9e6--8add5cbf38e1417db079ce8e07657198 58b43875c59b4faeb5c136fddc5e3193 2e53d9d984384a3ab687e5fe84efdae6--58b43875c59b4faeb5c136fddc5e3193 194265611a85422eb654386883dff287 2e53d9d984384a3ab687e5fe84efdae6--194265611a85422eb654386883dff287 869863ad0b2d492bbfb27afcfbf2cdf1 58b43875c59b4faeb5c136fddc5e3193--869863ad0b2d492bbfb27afcfbf2cdf1 4876b9b69dca4fbc98ae28a3d80f2203 869863ad0b2d492bbfb27afcfbf2cdf1--4876b9b69dca4fbc98ae28a3d80f2203 d477a4d4b70545c48c243335618c2b46 4876b9b69dca4fbc98ae28a3d80f2203--d477a4d4b70545c48c243335618c2b46 11888727c86f43cca3652b0d8e1045bd d68c03d6300d41719f6d136de0ee1fce ae1f1d5e45714fbd9239432971f76089--d68c03d6300d41719f6d136de0ee1fce 5344e5f4841b40ac94a3295685e84014 2 d68c03d6300d41719f6d136de0ee1fce--8add5cbf38e1417db079ce8e07657198 c6e94e1a1e3d4c7b8d4d8908f9f914fc 8add5cbf38e1417db079ce8e07657198--c6e94e1a1e3d4c7b8d4d8908f9f914fc 4e0e6ab94a214cb7ac35235f5aae8f95 H c6e94e1a1e3d4c7b8d4d8908f9f914fc--4e0e6ab94a214cb7ac35235f5aae8f95 d7b97a0b686442dfa4d0b15517cde50b PHASE(1.571) 4e0e6ab94a214cb7ac35235f5aae8f95--d7b97a0b686442dfa4d0b15517cde50b c253a8bbb552463ca879733530735339 d7b97a0b686442dfa4d0b15517cde50b--c253a8bbb552463ca879733530735339 6cf3f751b3c84dc8844be9f1c948f6e6 d7b97a0b686442dfa4d0b15517cde50b--6cf3f751b3c84dc8844be9f1c948f6e6 c253a8bbb552463ca879733530735339--11888727c86f43cca3652b0d8e1045bd b93b2cf90d564841a5517982ce02c189 d9ea9dceec84439f91f1f5abca8d07ed 5344e5f4841b40ac94a3295685e84014--d9ea9dceec84439f91f1f5abca8d07ed 06d531c1353a4ed1b6a93cd897d46c18 d9ea9dceec84439f91f1f5abca8d07ed--06d531c1353a4ed1b6a93cd897d46c18 06d531c1353a4ed1b6a93cd897d46c18--194265611a85422eb654386883dff287 7def2c5c9f1c4a18ae71c47ebae0cb61 194265611a85422eb654386883dff287--7def2c5c9f1c4a18ae71c47ebae0cb61 7def2c5c9f1c4a18ae71c47ebae0cb61--6cf3f751b3c84dc8844be9f1c948f6e6 032ce48cc40542b0a334825c56116536 H 6cf3f751b3c84dc8844be9f1c948f6e6--032ce48cc40542b0a334825c56116536 032ce48cc40542b0a334825c56116536--b93b2cf90d564841a5517982ce02c189

Other functionalities are directly built in the block system. For example, the inverse operation can be created with the dagger() method.

qft_inv = qft((0, 1, 2)).dagger()
%3 fec61ffd242f4558acfdcbe27550ec14 0 6afba69f7f204bccaad0cf883edcdacc fec61ffd242f4558acfdcbe27550ec14--6afba69f7f204bccaad0cf883edcdacc 733faad6b31440b6b94e247111de1a6e 1 14311d1b3d5045298857b866c9a0cecd 6afba69f7f204bccaad0cf883edcdacc--14311d1b3d5045298857b866c9a0cecd 34bddec210f54062bcbca3bf1c76a4bf 14311d1b3d5045298857b866c9a0cecd--34bddec210f54062bcbca3bf1c76a4bf d513606f401d46d3a5c274db235f82cf PHASE(-0.785) 34bddec210f54062bcbca3bf1c76a4bf--d513606f401d46d3a5c274db235f82cf 03571fd6e740400a9b3786e9ac62f20f PHASE(-1.571) d513606f401d46d3a5c274db235f82cf--03571fd6e740400a9b3786e9ac62f20f 307dd72e06904efbbdcdddba130cdb7b d513606f401d46d3a5c274db235f82cf--307dd72e06904efbbdcdddba130cdb7b 276c6edeaa8942499f9030a15e518480 H 03571fd6e740400a9b3786e9ac62f20f--276c6edeaa8942499f9030a15e518480 eb213cfc6d8640b09d5ac2bf308fe282 03571fd6e740400a9b3786e9ac62f20f--eb213cfc6d8640b09d5ac2bf308fe282 6c1c4523677c47828713cb3530ef2eef 276c6edeaa8942499f9030a15e518480--6c1c4523677c47828713cb3530ef2eef 00dca956476045ebad925cb4c038491d ea36e589a6e946b488d6f58b035d49f0 733faad6b31440b6b94e247111de1a6e--ea36e589a6e946b488d6f58b035d49f0 96c6309d7ba445d79ac5c7a50fa2a429 2 1e41e41d246640f68830d92373f48298 PHASE(-1.571) ea36e589a6e946b488d6f58b035d49f0--1e41e41d246640f68830d92373f48298 8b439c8b2a0849c89ddd0bfb53d663fc H 1e41e41d246640f68830d92373f48298--8b439c8b2a0849c89ddd0bfb53d663fc 937a714a8ee84ad2aaa3cb7bd41af371 1e41e41d246640f68830d92373f48298--937a714a8ee84ad2aaa3cb7bd41af371 99761a81e468484b84e9d8296c19a675 8b439c8b2a0849c89ddd0bfb53d663fc--99761a81e468484b84e9d8296c19a675 99761a81e468484b84e9d8296c19a675--eb213cfc6d8640b09d5ac2bf308fe282 70cfdf69cd0840829086af136f87818f eb213cfc6d8640b09d5ac2bf308fe282--70cfdf69cd0840829086af136f87818f 70cfdf69cd0840829086af136f87818f--00dca956476045ebad925cb4c038491d 9ce00a27a458402bb46e7919bfbd99a1 43f813553b1d46e6bfe96aa646e31219 H 96c6309d7ba445d79ac5c7a50fa2a429--43f813553b1d46e6bfe96aa646e31219 43f813553b1d46e6bfe96aa646e31219--937a714a8ee84ad2aaa3cb7bd41af371 c680561b80664e9580ef47fed50a1484 937a714a8ee84ad2aaa3cb7bd41af371--c680561b80664e9580ef47fed50a1484 c680561b80664e9580ef47fed50a1484--307dd72e06904efbbdcdddba130cdb7b a44d75616002448b987e3aada1c238a8 307dd72e06904efbbdcdddba130cdb7b--a44d75616002448b987e3aada1c238a8 96f6bc1c2a374ff1bee53bf4f879be8b a44d75616002448b987e3aada1c238a8--96f6bc1c2a374ff1bee53bf4f879be8b 96f6bc1c2a374ff1bee53bf4f879be8b--9ce00a27a458402bb46e7919bfbd99a1

Digital-analog composition

In Qadence, analog operations are first-class citizens. An analog operation is one whose unitary is best described by the evolution of some hermitian generator, or Hamiltonian, acting on an arbitrary number of qubits. Qadence provides the HamEvo class to initialize analog operations. For a time-independent generator \(\mathcal{H}\) and some time variable \(t\), HamEvo(H, t) represents the evolution operator \(\exp(-i\mathcal{H}t)\).

Analog operations constitute a generalization of digital operations, and all digital operations can also be represented as the evolution of some hermitian generator. For example, the RX gate is the evolution of X.

from qadence import X, RX, HamEvo, PI
from torch import allclose

angle = PI/2

block_digital = RX(0, angle)

block_analog = HamEvo(0.5*X(0), angle)

print(allclose(block_digital.tensor(), block_analog.tensor()))
True

As seen in the previous section, arbitrary Hamiltonians can be constructed using Pauli operators. Their evolution can be combined with other arbitrary digital operations and incorporated into any quantum program.

from qadence import X, Y, RX, HamEvo
from qadence import add, kron, PI

def xy_int(i: int, j: int):
    return (1/2) * (X(i)@X(j) + Y(i)@Y(j))

n_qubits = 3

xy_ham = add(xy_int(i, i+1) for i in range(n_qubits-1))

analog_evo = HamEvo(xy_ham, 1.0)

digital_block = kron(RX(i, i*PI/2) for i in range(n_qubits))

program = digital_block * analog_evo * digital_block
%3 cluster_c9128d941708434d82425c2bd662baa4 ba1243c7a5134258a70b9091a1947e35 0 1c8283fd59d64501b4b2f5d2ea2d0b14 RX(0.0) ba1243c7a5134258a70b9091a1947e35--1c8283fd59d64501b4b2f5d2ea2d0b14 91db0225c71b415483d8096865a9d8a5 1 57f944ef46914ee0ab4fcfa1bd7d5fa1 HamEvo 1c8283fd59d64501b4b2f5d2ea2d0b14--57f944ef46914ee0ab4fcfa1bd7d5fa1 e4b2097bdfda4cacad92c3f7b8f3bbc3 RX(0.0) 57f944ef46914ee0ab4fcfa1bd7d5fa1--e4b2097bdfda4cacad92c3f7b8f3bbc3 51f9bdcc1e3a472ab473795db4fc4446 e4b2097bdfda4cacad92c3f7b8f3bbc3--51f9bdcc1e3a472ab473795db4fc4446 57a7dc73b666436a93a9f8094184f009 385fa77eeab24facab5899f2695946fd RX(1.571) 91db0225c71b415483d8096865a9d8a5--385fa77eeab24facab5899f2695946fd 6ab3a046a14b461cb6d900904a448c78 2 58a01ccff58f422782941467e12afe7b t = 1.000 385fa77eeab24facab5899f2695946fd--58a01ccff58f422782941467e12afe7b 85174aca142446e9aeab2c9a4d6b86af RX(1.571) 58a01ccff58f422782941467e12afe7b--85174aca142446e9aeab2c9a4d6b86af 85174aca142446e9aeab2c9a4d6b86af--57a7dc73b666436a93a9f8094184f009 c74f415e653e4e81b6db4e2ab5da085d c0290b6cf7644709a35deaf9d13953a8 RX(3.142) 6ab3a046a14b461cb6d900904a448c78--c0290b6cf7644709a35deaf9d13953a8 8a66a53d33814550b1d322da9ab9026d c0290b6cf7644709a35deaf9d13953a8--8a66a53d33814550b1d322da9ab9026d 364806dfd2604b2582db9a1ae33fb8fe RX(3.142) 8a66a53d33814550b1d322da9ab9026d--364806dfd2604b2582db9a1ae33fb8fe 364806dfd2604b2582db9a1ae33fb8fe--c74f415e653e4e81b6db4e2ab5da085d

Block execution

To quickly run block operations and access wavefunctions, samples or expectation values of observables, one can use the convenience functions run, sample and expectation.

from qadence import kron, add, H, Z, run, sample, expectation

n_qubits = 2

# Prepares a uniform state
h_block = kron(H(i) for i in range(n_qubits))

wf = run(h_block)

xs = sample(h_block, n_shots=1000)

obs = add(Z(i) for i in range(n_qubits))
ex = expectation(h_block, obs)
wf = tensor([[0.5000+0.j, 0.5000+0.j, 0.5000+0.j, 0.5000+0.j]])
xs = [OrderedCounter({'01': 265, '00': 254, '10': 251, '11': 230})]
ex = tensor([[0.]])

Execution via QuantumCircuit and QuantumModel

More fine-grained control and better performance is provided via the high-level QuantumModel abstraction. Quantum programs in Qadence are constructed in two steps:

  1. Build a QuantumCircuit which ties together a composite block and a register.
  2. Define a QuantumModel which differentiates, compiles and executes the circuit.

Execution of more complex Qadence programs will be explored in the next tutorials.

Adding noise to gates

It is possible to add noise to gates. Please refer to the noise tutorial here.