Skip to content

Parametric programs

Qadence provides a flexible parameter system built on top of Sympy. Parameters can be of different types:

  • Fixed parameter: a constant with a fixed, non-trainable value (e.g. \(\dfrac{\pi}{2}\)).
  • Variational parameter: a trainable parameter which will be automatically picked up by the optimizer.
  • Feature parameter: a non-trainable parameter which can be used to pass input values.

Fixed parameters

Passing fixed parameters to blocks can be done by simply passing a Python numeric type or a torch.Tensor.

import torch
from qadence import RX, run, PI

wf = run(RX(0, torch.tensor(PI)))

wf = run(RX(0, PI))
wf = tensor([[6.1232e-17+0.j, 0.0000e+00-1.j]])
wf = tensor([[6.1232e-17+0.j, 0.0000e+00-1.j]])

Variational parameters

To parametrize a block a VariationalParameter instance is required. In most cases Qadence also accepts a Python string, which will be used to automatically initialize a VariationalParameter:

from qadence import RX, run, VariationalParameter

block = RX(0, VariationalParameter("theta"))
block = RX(0, "theta")  # Equivalent

wf = run(block)
wf = tensor([[0.9967+0.0000j, 0.0000-0.0807j]])

By calling run, a random value for "theta" is initialized at execution. In a QuantumModel, variational parameters are stored in the underlying model parameter dictionary.

Feature parameters

A FeatureParameter type can also be used. It requires an input value or a batch of values. In most cases, Qadence accepts a values dictionary to set the input of feature parameters.

from torch import tensor
from qadence import RX, PI, run, FeatureParameter

block = RX(0, FeatureParameter("phi"))

wf = run(block, values = {"phi": tensor([PI, PI/2])})
wf = tensor([[6.1232e-17+0.0000j, 0.0000e+00-1.0000j],
        [7.0711e-01+0.0000j, 0.0000e+00-0.7071j]])

Since a batch of input values was passed, the run function returns a batch of output states. Note that FeatureParameter("x") and VariationalParameter("x") are simply aliases for Parameter("x", trainable = False) and Parameter("x", trainable = True).

Multiparameter expressions and analog integration

The integration with Sympy becomes useful when one wishes to write arbitrary parameter compositions. Parameters can also be used as scaling coefficients in the block system, which is essential when defining arbitrary analog operations.

from torch import tensor
from qadence import RX, Z, HamEvo, PI
from qadence import VariationalParameter, FeatureParameter, run
from sympy import sin

theta, phi = VariationalParameter("theta"), FeatureParameter("phi")

# Arbitrary parameter composition
expr = PI * sin(theta + phi)

# Use as unitary gate arguments
gate = RX(0, expr)

# Or as scaling coefficients for Hermitian operators
h_op = expr * (Z(0) @ Z(1))

wf = run(gate * HamEvo(h_op, 1.0), values = {"phi": tensor(PI)})
wf = tensor([[0.9669+0.2277j, 0.0000+0.0000j, 0.0264+0.1123j, 0.0000+0.0000j]])

Parameter redundancy

Parameters are uniquely defined by their name and redundancy is allowed in composite blocks to assign the same value to different blocks. This is useful, for example, when defining layers of rotation gates typically used as feature maps.

from torch import tensor
from qadence import RY, PI, run, kron, FeatureParameter

n_qubits = 3

param = FeatureParameter("phi")

block = kron(RY(i, (i+1) * param) for i in range(n_qubits))

wf = run(block, values = {"phi": tensor(PI)})
wf = tensor([[ 1.1248e-32+0.j,  6.1232e-17+0.j, -1.3775e-48+0.j, -7.4988e-33+0.j,
          1.8370e-16+0.j,  1.0000e+00+0.j, -2.2496e-32+0.j, -1.2246e-16+0.j]])

Parametrized circuits

Let's look at a final example of an arbitrary composition of digital and analog parameterized blocks:

import sympy
from qadence import RX, RY, RZ, CNOT, CPHASE, Z, HamEvo
from qadence import run, chain, add, kron, FeatureParameter, VariationalParameter, PI

n_qubits = 3

phi = FeatureParameter("Φ")
theta = VariationalParameter("θ")

rotation_block = kron(
    RX(0, phi/theta),
    RY(1, theta*2),
    RZ(2, sympy.cos(phi))
)
digital_entangler = CNOT(0, 1) * CPHASE(1, 2, PI)

hamiltonian = add(theta * (Z(i) @ Z(i+1)) for i in range(n_qubits-1))

analog_evo = HamEvo(hamiltonian, phi)

program = chain(rotation_block, digital_entangler, analog_evo)
%3 cluster_edda39057e6149f29a43dd635ae2509d a7e934c97c654382b09682070bca859b 0 22a111ee56554be5b2538bfe47e1c159 RX(Φ/θ) a7e934c97c654382b09682070bca859b--22a111ee56554be5b2538bfe47e1c159 6a1d2d551fe54b928f2af6b41f16a097 1 f21ccf169052489eaadadd8a22564f6f 22a111ee56554be5b2538bfe47e1c159--f21ccf169052489eaadadd8a22564f6f 203425bb1f024f608b7301a597eddb5a f21ccf169052489eaadadd8a22564f6f--203425bb1f024f608b7301a597eddb5a fe682e74b2e244b2a7bcea82a51af935 HamEvo 203425bb1f024f608b7301a597eddb5a--fe682e74b2e244b2a7bcea82a51af935 4261f1592d8a4e7c9dec64e4a251cff7 fe682e74b2e244b2a7bcea82a51af935--4261f1592d8a4e7c9dec64e4a251cff7 df75aba0125648da9a282a7469bfd2da cff8963b78b84c149ca54116c075ad8c RY(2*θ) 6a1d2d551fe54b928f2af6b41f16a097--cff8963b78b84c149ca54116c075ad8c f590dbf1c1964cee87262346d1f51a08 2 d1b9f9c5d4574fe8987a6438e9cb84c3 X cff8963b78b84c149ca54116c075ad8c--d1b9f9c5d4574fe8987a6438e9cb84c3 d1b9f9c5d4574fe8987a6438e9cb84c3--f21ccf169052489eaadadd8a22564f6f 6171544dadb04a3388e7eea48a504ab5 d1b9f9c5d4574fe8987a6438e9cb84c3--6171544dadb04a3388e7eea48a504ab5 455c270394eb42708192a088bcf2104a t = Φ 6171544dadb04a3388e7eea48a504ab5--455c270394eb42708192a088bcf2104a 455c270394eb42708192a088bcf2104a--df75aba0125648da9a282a7469bfd2da cc2b962cffc1476993f397dab8a4f362 a05c31ff1c534729b8c9a0c63f974bb0 RZ(cos(Φ)) f590dbf1c1964cee87262346d1f51a08--a05c31ff1c534729b8c9a0c63f974bb0 010d077ffae74813b4cf72b49fac9db3 a05c31ff1c534729b8c9a0c63f974bb0--010d077ffae74813b4cf72b49fac9db3 f4f5369c5cd94ac6bf18c3d26272613d PHASE(3.142) 010d077ffae74813b4cf72b49fac9db3--f4f5369c5cd94ac6bf18c3d26272613d f4f5369c5cd94ac6bf18c3d26272613d--6171544dadb04a3388e7eea48a504ab5 8474f0a8e96a422d9df7b1cd8d8752af f4f5369c5cd94ac6bf18c3d26272613d--8474f0a8e96a422d9df7b1cd8d8752af 8474f0a8e96a422d9df7b1cd8d8752af--cc2b962cffc1476993f397dab8a4f362

Please note the different colors for the parametrization with different types. The default palette assigns blue for VariationalParameter, green for FeatureParameter, orange for numeric values, and shaded red for non-parametric gates.