State initialization
Qadence offers convenience routines for preparing initial quantum states.
These routines are divided into two approaches:
As a dense matrix.
From a suitable quantum circuit. This is available for every backend and it should be added
in front of the desired quantum circuit to simulate.
Let's illustrate the usage of the state preparation routine.
from qadence import random_state , product_state , is_normalized , StateGeneratorType
# Random initial state.
# the default `type` is StateGeneratorType.HaarMeasureFast
state = random_state ( n_qubits = 2 , type = StateGeneratorType . RANDOM_ROTATIONS )
# Check the normalization.
assert is_normalized ( state )
# Product state from a given bitstring.
# NB: Qadence follows the big endian convention.
state = product_state ( "01" )
Ra n dom i n i t ial s tate ge nerate d wi t h ro tat io ns :
s tate = [ 0.58439368+0. j 0.7511167 + 0. j 0. -0.18857704 j
0. -0.24237662 j ]
Produc t s tate correspo n di n g t o bi tstr i n g ' 01 ' :
s tate = [ 0.+0. j 1.+0. j 0.+0. j 0.+0. j ]
Now we see how to generate the product state corresponding to the one above with
a suitable quantum circuit.
from qadence import product_block , tag , hea , QuantumCircuit
from qadence.draw import display
state_prep_block = product_block ( "01" )
# display(state_prep_block)
# Let's now prepare a circuit.
n_qubits = 4
state_prep_block = product_block ( "0001" )
tag ( state_prep_block , "Prep block" )
circuit_block = tag ( hea ( n_qubits , depth = 2 ), "Circuit block" )
qc_with_state_prep = QuantumCircuit ( n_qubits , state_prep_block , circuit_block )
%3
cluster_42b987aee0e145599f0505e67416d347
Circuit block
cluster_12246ae069bd43fbae47157c07d5c92f
Prep block
6e8dd027077d4ec0b48b5111e624cb02
0
69f9a648d295487fb92b8b2fe19eea3f
6e8dd027077d4ec0b48b5111e624cb02--69f9a648d295487fb92b8b2fe19eea3f
dda3a8843d644cb8945d8e9b91760247
1
7b6f4cd13b54477b911ea6b76d1b6157
RX(theta₀)
69f9a648d295487fb92b8b2fe19eea3f--7b6f4cd13b54477b911ea6b76d1b6157
ed4bf0305ee6497181b6b61288d74391
RY(theta₄)
7b6f4cd13b54477b911ea6b76d1b6157--ed4bf0305ee6497181b6b61288d74391
44438ce787ef4f9d8e9ef6968f50c13a
RX(theta₈)
ed4bf0305ee6497181b6b61288d74391--44438ce787ef4f9d8e9ef6968f50c13a
81f6dc1b719e460f9c4ddb6c95dd086b
44438ce787ef4f9d8e9ef6968f50c13a--81f6dc1b719e460f9c4ddb6c95dd086b
417e3d6d26884466bf34068c644e0c48
81f6dc1b719e460f9c4ddb6c95dd086b--417e3d6d26884466bf34068c644e0c48
2348f7d5ac204ed8a422d3283f3a6312
RX(theta₁₂)
417e3d6d26884466bf34068c644e0c48--2348f7d5ac204ed8a422d3283f3a6312
f44b537d748b4294b4337e03f5cc0bb0
RY(theta₁₆)
2348f7d5ac204ed8a422d3283f3a6312--f44b537d748b4294b4337e03f5cc0bb0
2f8162d263d14222b8f355bc6e2c5831
RX(theta₂₀)
f44b537d748b4294b4337e03f5cc0bb0--2f8162d263d14222b8f355bc6e2c5831
75aaa75fd28a470c94c087a06c0ee32e
2f8162d263d14222b8f355bc6e2c5831--75aaa75fd28a470c94c087a06c0ee32e
8cb25009e487402ba10b924f1de7ca85
75aaa75fd28a470c94c087a06c0ee32e--8cb25009e487402ba10b924f1de7ca85
1c557cba5a17424ca4d21b2e308b139e
8cb25009e487402ba10b924f1de7ca85--1c557cba5a17424ca4d21b2e308b139e
a34f9b9730694ebf87d3725220a407ed
552554a8353b4234b09e11ee2cc7e46b
dda3a8843d644cb8945d8e9b91760247--552554a8353b4234b09e11ee2cc7e46b
ed2b40f4f87f4dfe9a7b1c2aa4b0cedb
2
1054d4ed07d94c9ba80e206272877043
RX(theta₁)
552554a8353b4234b09e11ee2cc7e46b--1054d4ed07d94c9ba80e206272877043
72b46bb0e7834a3a949df860ce7246c0
RY(theta₅)
1054d4ed07d94c9ba80e206272877043--72b46bb0e7834a3a949df860ce7246c0
06db1a35d7774d8b9f07bfc1abb970b4
RX(theta₉)
72b46bb0e7834a3a949df860ce7246c0--06db1a35d7774d8b9f07bfc1abb970b4
65bbe9a5b3074f0ea1e5fbd2b4b12598
X
06db1a35d7774d8b9f07bfc1abb970b4--65bbe9a5b3074f0ea1e5fbd2b4b12598
65bbe9a5b3074f0ea1e5fbd2b4b12598--81f6dc1b719e460f9c4ddb6c95dd086b
2de8db6ffdc74e078a60c4a7274644c6
65bbe9a5b3074f0ea1e5fbd2b4b12598--2de8db6ffdc74e078a60c4a7274644c6
fae4e93803ab47efb9a77a532d047bc0
RX(theta₁₃)
2de8db6ffdc74e078a60c4a7274644c6--fae4e93803ab47efb9a77a532d047bc0
df6fd412f1b7476994da5599e67d8106
RY(theta₁₇)
fae4e93803ab47efb9a77a532d047bc0--df6fd412f1b7476994da5599e67d8106
e493e99481c94c488478c1f574b71402
RX(theta₂₁)
df6fd412f1b7476994da5599e67d8106--e493e99481c94c488478c1f574b71402
aba98da96b7442c888f549f0e3dd30d9
X
e493e99481c94c488478c1f574b71402--aba98da96b7442c888f549f0e3dd30d9
aba98da96b7442c888f549f0e3dd30d9--75aaa75fd28a470c94c087a06c0ee32e
cc656ac9c80d4a4e8623e356cab17c47
aba98da96b7442c888f549f0e3dd30d9--cc656ac9c80d4a4e8623e356cab17c47
cc656ac9c80d4a4e8623e356cab17c47--a34f9b9730694ebf87d3725220a407ed
17eb7d78ca5641e29bc08ceb7bbe6ef1
68f7bea5da0c488380eea4151d6937e5
ed2b40f4f87f4dfe9a7b1c2aa4b0cedb--68f7bea5da0c488380eea4151d6937e5
83de104eadf74ff3a739a80252743a4e
3
313f6b4056fa4a9b870a29f28dca2b2e
RX(theta₂)
68f7bea5da0c488380eea4151d6937e5--313f6b4056fa4a9b870a29f28dca2b2e
c1e853bd71db4f50aa7bb338d68dd854
RY(theta₆)
313f6b4056fa4a9b870a29f28dca2b2e--c1e853bd71db4f50aa7bb338d68dd854
9260f092030641f0a6ed0e76642ef3c7
RX(theta₁₀)
c1e853bd71db4f50aa7bb338d68dd854--9260f092030641f0a6ed0e76642ef3c7
66a452a7865b4f4887d5af6e37f70b0c
9260f092030641f0a6ed0e76642ef3c7--66a452a7865b4f4887d5af6e37f70b0c
bca4cf0cbc0a4444ac440f7137d5bc00
X
66a452a7865b4f4887d5af6e37f70b0c--bca4cf0cbc0a4444ac440f7137d5bc00
bca4cf0cbc0a4444ac440f7137d5bc00--2de8db6ffdc74e078a60c4a7274644c6
f7392292edf64e19be23c004927c1687
RX(theta₁₄)
bca4cf0cbc0a4444ac440f7137d5bc00--f7392292edf64e19be23c004927c1687
8b8b786b44eb4cee9254d7e5c065a12a
RY(theta₁₈)
f7392292edf64e19be23c004927c1687--8b8b786b44eb4cee9254d7e5c065a12a
c5d0c7fb009c476d80f0db7945cfdbc7
RX(theta₂₂)
8b8b786b44eb4cee9254d7e5c065a12a--c5d0c7fb009c476d80f0db7945cfdbc7
36c9d1372a6e4a358299410d13900e2d
c5d0c7fb009c476d80f0db7945cfdbc7--36c9d1372a6e4a358299410d13900e2d
df1923a61b8d424fa819b81e4889c577
X
36c9d1372a6e4a358299410d13900e2d--df1923a61b8d424fa819b81e4889c577
df1923a61b8d424fa819b81e4889c577--cc656ac9c80d4a4e8623e356cab17c47
df1923a61b8d424fa819b81e4889c577--17eb7d78ca5641e29bc08ceb7bbe6ef1
d2d641502445424bb078ec310ec0b150
4ea75fa3fb0c4185b759e0465ef49d9e
X
83de104eadf74ff3a739a80252743a4e--4ea75fa3fb0c4185b759e0465ef49d9e
dd436ce3db97474ea96362920513b52f
RX(theta₃)
4ea75fa3fb0c4185b759e0465ef49d9e--dd436ce3db97474ea96362920513b52f
e7bb4f4e947b4753a4e11f0fc35952b7
RY(theta₇)
dd436ce3db97474ea96362920513b52f--e7bb4f4e947b4753a4e11f0fc35952b7
53e7e930ca8749a893b0d80e64382af0
RX(theta₁₁)
e7bb4f4e947b4753a4e11f0fc35952b7--53e7e930ca8749a893b0d80e64382af0
797f95266fda4a8baaa6786b6437bbd0
X
53e7e930ca8749a893b0d80e64382af0--797f95266fda4a8baaa6786b6437bbd0
797f95266fda4a8baaa6786b6437bbd0--66a452a7865b4f4887d5af6e37f70b0c
a275d7b5f8794ebd80a22960aad88bc6
797f95266fda4a8baaa6786b6437bbd0--a275d7b5f8794ebd80a22960aad88bc6
7cc158564d2e4441844673fc96d4f75c
RX(theta₁₅)
a275d7b5f8794ebd80a22960aad88bc6--7cc158564d2e4441844673fc96d4f75c
5d9d42cc0d1c49b8ab381e0ddbb9cae0
RY(theta₁₉)
7cc158564d2e4441844673fc96d4f75c--5d9d42cc0d1c49b8ab381e0ddbb9cae0
8ca63d931bf644bdbe78215bb9d6ccff
RX(theta₂₃)
5d9d42cc0d1c49b8ab381e0ddbb9cae0--8ca63d931bf644bdbe78215bb9d6ccff
7ca44b1fa8a94c099ba13401bcae5b54
X
8ca63d931bf644bdbe78215bb9d6ccff--7ca44b1fa8a94c099ba13401bcae5b54
7ca44b1fa8a94c099ba13401bcae5b54--36c9d1372a6e4a358299410d13900e2d
2fae2f9b2b8a4aa1b3b5b52ddefeffdf
7ca44b1fa8a94c099ba13401bcae5b54--2fae2f9b2b8a4aa1b3b5b52ddefeffdf
2fae2f9b2b8a4aa1b3b5b52ddefeffdf--d2d641502445424bb078ec310ec0b150
Several standard quantum states can be conveniently initialized in Qadence, both in statevector form as well as in block form as shown in following.
State vector initialization
Qadence offers a number of constructor functions for state vector preparation.
from qadence import uniform_state , zero_state , one_state
n_qubits = 3
batch_size = 2
uniform_state = uniform_state ( n_qubits , batch_size )
zero_state = zero_state ( n_qubits , batch_size )
one_state = one_state ( n_qubits , batch_size )
U n i f orm s tate =
tens or( [[ 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j ,
0.3536+0. j ],
[ 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j , 0.3536+0. j ,
0.3536+0. j ]] )
Zero s tate =
tens or( [[ 1.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ],
[ 1.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ]] )
O ne s tate =
tens or( [[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 1.+0. j ],
[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 1.+0. j ]] )
As already seen, product states can be easily created, even in batches:
from qadence import product_state , rand_product_state
# From a bitsring "100"
prod_state = product_state ( "100" , batch_size )
# Or a random product state
rand_state = rand_product_state ( n_qubits , batch_size )
Produc t s tate =
tens or( [[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 1.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ]] )
Ra n dom s tate =
tens or( [[ 0.+0. j , 1.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ],
[ 0.+0. j , 0.+0. j , 0.+0. j , 1.+0. j , 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ]] )
Creating a GHZ state:
from qadence import ghz_state
ghz = ghz_state ( n_qubits , batch_size )
GHZ s tate =
tens or( [[ 0.7071+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j ,
0.7071+0. j ],
[ 0.7071+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j , 0.0000+0. j ,
0.7071+0. j ]] )
Creating a random state uniformly sampled from a Haar measure:
from qadence import random_state
rand_haar_state = random_state ( n_qubits , batch_size )
Ra n dom s tate fr om Haar =
tens or( [[ 0.0210+1.3910e-01 j , 0.5115-1.8703e-01 j , -0.2232-1.9475e-01 j ,
0.0546-1.0278e-01 j , -0.4123+3.4368e-01 j , 0.0442-2.6168e-01 j ,
-0.1116+4.3343e-01 j , 0.1530-2.6275e-03 j ],
[ -0.2636+3.1462e-01 j , 0.2914-3.6732e-01 j , -0.1191-2.6621e-01 j ,
0.1736-8.2467e-02 j , -0.1679+3.3491e-01 j , 0.2364+3.1215e-04 j ,
0.0961+3.3518e-01 j , -0.3834+1.5768e-01 j ]] )
Custom initial states can then be passed to either run
, sample
and expectation
through the state
argument
from qadence import random_state , product_state , CNOT , run
init_state = product_state ( "10" )
final_state = run ( CNOT ( 0 , 1 ), state = init_state )
Fi nal s tate = tens or( [[ 0.+0. j , 0.+0. j , 0.+0. j , 1.+0. j ]] )
Density matrices conversion
It is also possible to obtain density matrices from statevectors. They can be passed as inputs to quantum programs performing density matrix based operations such as noisy simulations, when the backend allows such as PyQTorch.
from qadence import product_state , density_mat
init_state = product_state ( "10" )
init_density_matrix = density_mat ( init_state )
final_density_matrix = run ( CNOT ( 0 , 1 ), state = init_density_matrix )
I n i t ial = De ns i t yMa tr ix( [[[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ],
[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ],
[ 0.+0. j , 0.+0. j , 1.+0. j , 0.+0. j ],
[ 0.+0. j , 0.+0. j , 0.+0. j , 0.+0. j ]]] )
Fi nal = De ns i t yMa tr ix( [[[ 0.-0. j , 0.-0. j , 0.-0. j , 0.-0. j ],
[ 0.-0. j , 0.-0. j , 0.-0. j , 0.-0. j ],
[ 0.-0. j , 0.-0. j , 0.-0. j , 0.-0. j ],
[ 0.-0. j , 0.-0. j , 0.-0. j , 1.-0. j ]]] )
Block initialization
Not all backends support custom statevector initialization, however previous utility functions have their counterparts to initialize the respective blocks:
from qadence import uniform_block , one_block
n_qubits = 3
uniform_block = uniform_block ( n_qubits )
one_block = one_block ( n_qubits )
Kro n Block( 0 , 1 , 2 )
├── H( 0 )
├── H( 1 )
└── H( 2 )
Kro n Block( 0 , 1 , 2 )
├── X( 0 )
├── X( 1 )
└── X( 2 )
Similarly, for product states:
from qadence import product_block , rand_product_block
product_block = product_block ( "100" )
rand_product_block = rand_product_block ( n_qubits )
Kro n Block( 0 , 1 , 2 )
├── X( 0 )
├── I( 1 )
└── I( 2 )
Kro n Block( 0 , 1 , 2 )
├── I( 0 )
├── I( 1 )
└── X( 2 )
And GHZ states:
from qadence import ghz_block
ghz_block = ghz_block ( n_qubits )
Chai n Block( 0 , 1 , 2 )
├── H( 0 )
└── Chai n Block( 0 , 1 , 2 )
├── CNOT( 0 , 1 )
└── CNOT( 1 , 2 )
Initial state blocks can simply be chained at the start of a given circuit.
Utility functions
Some state vector utility functions are also available. We can easily create the probability mass function of a given statevector using torch.distributions.Categorical
from qadence import random_state , pmf
n_qubits = 3
state = random_state ( n_qubits )
distribution = pmf ( state )
Ca te gorical(probs : t orch.Size( [ 1 , 8 ] ))
We can also check if a state is normalized:
from qadence import random_state , is_normalized
state = random_state ( n_qubits )
print ( is_normalized ( state ))
Or normalize a state:
import torch
from qadence import normalize , is_normalized
state = torch . tensor ([[ 1 , 1 , 1 , 1 ]], dtype = torch . cdouble )
print ( normalize ( state ))
tens or( [[ 0.5000+0. j , 0.5000+0. j , 0.5000+0. j , 0.5000+0. j ]] )