Configuring a QNN
In qadence
, the QNN
is a variational quantum model that can potentially take multi-dimensional input.
The QNN
class needs a circuit and a list of observables; the number of feature parameters in the input circuit determines the number of input features (i.e. the dimensionality of the classical data given as input) whereas the number of observables determines the number of outputs of the quantum neural network.
The circuit has two parts, the feature map and the ansatz. The feature map is responsible for encoding the input data into the quantum state, while the ansatz is responsible for the variational part of the model. In addition, a third part of the QNN is the observables, which is (a list of) operators that are measured at the end of the circuit.
In QML Constructors we have seen how to construct the feature map and the ansatz. In this tutorial, we will see how to do the same using configs.
One convenient way to construct these three parts of the model is to use the config classes, namely,
ObservableConfig
, FeatureMapConfig
, AnsatzConfig
. These classes allow you to specify the type of circuit and the parameters of the circuit in a structured way.
Defining the Observable
The model output is the expectation value of the defined observable(s). We use the ObservableConfig
class to specify the observable.
It can be used to create Hamiltonians with 2-qubit interactions and single-qubit detunings. Any Hamiltonian supported by hamiltonian_factory
can be specified as an observable.
For example, suppose we want to measure the Z operator:
from qadence import create_observable , ObservableConfig , Z
observable_config = ObservableConfig (
detuning = Z ,
interaction = None ,
scale = 2.0 ,
shift =- 1.0 ,
)
observable = create_observable ( register = 4 , config = observable_config )
%3
cluster_78ca81b7dd9b4d84ae39baf2ecda9a50
8abce43fa7cf4705b4db16fa92faf987
0
98172e2366df4f05b094d2cfec596eda
8abce43fa7cf4705b4db16fa92faf987--98172e2366df4f05b094d2cfec596eda
ed32571644ca44a3bc72124b6e86f7d7
1
d4ffb51c06ac4449b1f1773f127fa4ff
98172e2366df4f05b094d2cfec596eda--d4ffb51c06ac4449b1f1773f127fa4ff
37093ceff62549f392372ce675698b7b
79b2594b92ed4d458028f023d0eb11a6
AddBlock
ed32571644ca44a3bc72124b6e86f7d7--79b2594b92ed4d458028f023d0eb11a6
dc846cdfd408483584287b8f33c366f0
2
79b2594b92ed4d458028f023d0eb11a6--37093ceff62549f392372ce675698b7b
582564d439e847ab98971146b8931d60
789ee387afbf42098698a966a4a18c2e
dc846cdfd408483584287b8f33c366f0--789ee387afbf42098698a966a4a18c2e
09acc2c7bd9c4925b3ea35a51eab30ea
3
789ee387afbf42098698a966a4a18c2e--582564d439e847ab98971146b8931d60
388f7579eaa142f9adb47fd02030a6bd
fea8d2ef9c364c1aa7daf6002bdfac95
09acc2c7bd9c4925b3ea35a51eab30ea--fea8d2ef9c364c1aa7daf6002bdfac95
fea8d2ef9c364c1aa7daf6002bdfac95--388f7579eaa142f9adb47fd02030a6bd
We have specified the observable Hamiltonian to be one with \(Z\) -detuning. The result is linearly scaled by 2.0 and shifted by -1.0. The shift or the scale can optionally also be a VariationalParameter
It is also possible to import some common Hamiltonians, such as total_magnetization_config
, zz_hamiltonian_config
and, ising_hamiltonian_config
.
For example, the total magnetization configuration:
from qadence import create_observable
from qadence.constructors import total_magnetization_config
observable_total_magnetization = create_observable ( register = 4 , config = total_magnetization_config ())
Alternatively, you can define the observable as a list of observables, in which case the QNN will output a list of values.
Scaling and Shifting the QNN Output
For any observable, by appropriately choosing the scale \(\alpha\) and shift \(\beta\) , you can constrain the QNN output within a desired range. This is particularly useful for normalizing measurements or ensuring that values remain within a meaningful interval for optimization.
To accomplish this, you need to determine the maximum and minimum values that the QNN output can take. For an observable, these extreme values are the two extreme eigenvalues \(\lambda_{max}\) and \(\lambda_{min}\) of the concerned Hamiltonian. Using these values, you can set the scale \(\alpha\) and shift \(\beta\) so that the QNN output is mapped to a specific range \([a,b]\) :
\[\alpha = \frac{b-a}{\lambda_{max}-\lambda_{min}}\]
\[\beta = \frac{a\lambda_{max}-b\lambda_{min}}{\lambda_{max}-\lambda_{min}}\]
This transformation ensures that:
\[ a \leq \alpha \lambda + \beta \leq b,\quad\forall \lambda \in [\lambda_{min},\lambda_{max}] \]
For full details on the ObservableConfig
class, see the API documentation .
Defining the Feature Map
Let us say we want to build a 4-qubit QNN that takes two inputs, namely, the \(x\) and the \(y\) coordinates of a point in the plane. We can use the FeatureMapConfig
class to specify the feature map.
from qadence import BasisSet , chain , create_fm_blocks , FeatureMapConfig , ReuploadScaling
fm_config = FeatureMapConfig (
num_features = 2 ,
inputs = [ "x" , "y" ],
basis_set = BasisSet . CHEBYSHEV ,
reupload_scaling = ReuploadScaling . TOWER ,
feature_range = {
"x" : ( - 1.0 , 1.0 ),
"y" : ( 0.0 , 1.0 ),
},
)
fm_blocks = create_fm_blocks ( register = 4 , config = fm_config )
feature_map = chain ( * fm_blocks )
%3
cluster_74a7435fbdeb42f79d09aa0ed6bcae1d
Tower Chebyshev FM
cluster_e16c89ad81f047ad92978d5c0ce5546e
Tower Chebyshev FM
c80a4669371e4c49a34eb2b07c361cd2
0
a94a3225f0f54ec8a0cf4f61611d73d8
RX(1.0*acos(x))
c80a4669371e4c49a34eb2b07c361cd2--a94a3225f0f54ec8a0cf4f61611d73d8
648a818bbdf049dfb1a1574852483b49
1
a61bcf05a1e04c28a0e017f8bdb9b942
a94a3225f0f54ec8a0cf4f61611d73d8--a61bcf05a1e04c28a0e017f8bdb9b942
7e7cf16c38ae48d98953cbe9f25d5af0
27001b91d098467682c58f5ec20fa8eb
RX(2.0*acos(x))
648a818bbdf049dfb1a1574852483b49--27001b91d098467682c58f5ec20fa8eb
4cbaf34a34e34476ab1a68bfac121c76
2
27001b91d098467682c58f5ec20fa8eb--7e7cf16c38ae48d98953cbe9f25d5af0
1bb395d24f71432a9413fe3bb150cf67
09eea5ce2644467097092a3d182166d9
RX(1.0*acos(2.0*y - 1.0))
4cbaf34a34e34476ab1a68bfac121c76--09eea5ce2644467097092a3d182166d9
eaf6223be6464751a95ce04a2c140b31
3
09eea5ce2644467097092a3d182166d9--1bb395d24f71432a9413fe3bb150cf67
e2c8e5f53dd7474c945264767d08076f
3ce81beff3694e25bd3fb97df1f6c67c
RX(2.0*acos(2.0*y - 1.0))
eaf6223be6464751a95ce04a2c140b31--3ce81beff3694e25bd3fb97df1f6c67c
3ce81beff3694e25bd3fb97df1f6c67c--e2c8e5f53dd7474c945264767d08076f
We have specified that the feature map should take two features, and have named the FeatureParameter
"x" and "y" respectively. Both these parameters are encoded using the Chebyshev basis set, and the reupload scaling is set to ReuploadScaling.TOWER
. One can optionally add the basis and the reupload scaling for each parameter separately.
The feature_range
parameter is a dictionary that specifies the range of values that each feature comes from. This is useful for scaling the input data to the range that the encoding function can handle. In default case, this range is mapped to the target range of the Chebyshev basis set which is \([-1, 1]\) . One can also specify the target range for each feature separately.
For full details on the FeatureMapConfig
class, see the API documentation .
Defining the Ansatz
The next part of the QNN is the ansatz. We use AnsatzConfig
class to specify the type of ansatz.
Let us say, we want to follow this feature map with 2 layers of hardware efficient ansatz.
from qadence import AnsatzConfig , AnsatzType , create_ansatz , Strategy
ansatz_config = AnsatzConfig (
depth = 2 ,
ansatz_type = AnsatzType . HEA ,
ansatz_strategy = Strategy . DIGITAL ,
)
ansatz = create_ansatz ( register = 4 , config = ansatz_config )
%3
f125584cbd874766bd75359f50bea5c4
0
2f617fe10aa94425a6f8698dd3fd8656
RX(theta₀)
f125584cbd874766bd75359f50bea5c4--2f617fe10aa94425a6f8698dd3fd8656
53e9f3bf07864fd89961c1eaead22305
1
ff8e1f4d28b8440291d9a0eeaf5cdb52
RY(theta₄)
2f617fe10aa94425a6f8698dd3fd8656--ff8e1f4d28b8440291d9a0eeaf5cdb52
120afbba5c12404da9f5f3b79addfb0b
RX(theta₈)
ff8e1f4d28b8440291d9a0eeaf5cdb52--120afbba5c12404da9f5f3b79addfb0b
23601ecd9e1f4ea4959a2cdd6634ec57
120afbba5c12404da9f5f3b79addfb0b--23601ecd9e1f4ea4959a2cdd6634ec57
fb57dee8c1a34508825279d5576a4f3f
23601ecd9e1f4ea4959a2cdd6634ec57--fb57dee8c1a34508825279d5576a4f3f
77a77919f65f40c0ae94f661f7d0b5c2
RX(theta₁₂)
fb57dee8c1a34508825279d5576a4f3f--77a77919f65f40c0ae94f661f7d0b5c2
25bedae0c12242358e30fbbac57460d9
RY(theta₁₆)
77a77919f65f40c0ae94f661f7d0b5c2--25bedae0c12242358e30fbbac57460d9
33fcab98146f4d35828550e3642de45d
RX(theta₂₀)
25bedae0c12242358e30fbbac57460d9--33fcab98146f4d35828550e3642de45d
09997969a6904ed7934635c724997150
33fcab98146f4d35828550e3642de45d--09997969a6904ed7934635c724997150
f6f7b6dbb92f42b78c52af0b40971eb3
09997969a6904ed7934635c724997150--f6f7b6dbb92f42b78c52af0b40971eb3
c3bc730d05554bff8822ed324612217d
f6f7b6dbb92f42b78c52af0b40971eb3--c3bc730d05554bff8822ed324612217d
0da5520fa69c42949688feb48174a349
fa15b6fd935c44dd888cef3fbb985409
RX(theta₁)
53e9f3bf07864fd89961c1eaead22305--fa15b6fd935c44dd888cef3fbb985409
2fb4f283b9f34fe0981c9bf7079b40b4
2
0ae54b1251f74f4d86a99b4557d6f90f
RY(theta₅)
fa15b6fd935c44dd888cef3fbb985409--0ae54b1251f74f4d86a99b4557d6f90f
20adaacea24340d4b852e2f30072fc7c
RX(theta₉)
0ae54b1251f74f4d86a99b4557d6f90f--20adaacea24340d4b852e2f30072fc7c
4e0621febcc74f57bd45b87e4075d52f
X
20adaacea24340d4b852e2f30072fc7c--4e0621febcc74f57bd45b87e4075d52f
4e0621febcc74f57bd45b87e4075d52f--23601ecd9e1f4ea4959a2cdd6634ec57
7ed95a6dd3874c6dab8d0be58c683477
4e0621febcc74f57bd45b87e4075d52f--7ed95a6dd3874c6dab8d0be58c683477
ae98a2ac072f41538a0275cb2e663932
RX(theta₁₃)
7ed95a6dd3874c6dab8d0be58c683477--ae98a2ac072f41538a0275cb2e663932
9237138f71254f8cb14e36119f148030
RY(theta₁₇)
ae98a2ac072f41538a0275cb2e663932--9237138f71254f8cb14e36119f148030
c6075bf78679445e99e09a5383b4831e
RX(theta₂₁)
9237138f71254f8cb14e36119f148030--c6075bf78679445e99e09a5383b4831e
8c21a3dbc6cc4dd888d0831d396c4023
X
c6075bf78679445e99e09a5383b4831e--8c21a3dbc6cc4dd888d0831d396c4023
8c21a3dbc6cc4dd888d0831d396c4023--09997969a6904ed7934635c724997150
5c5ec98609c94701b1b9f877e35474a1
8c21a3dbc6cc4dd888d0831d396c4023--5c5ec98609c94701b1b9f877e35474a1
5c5ec98609c94701b1b9f877e35474a1--0da5520fa69c42949688feb48174a349
a4499e343f414cf7a17f1aaa246739d0
e7b1797fbaa346a4938a87038514120a
RX(theta₂)
2fb4f283b9f34fe0981c9bf7079b40b4--e7b1797fbaa346a4938a87038514120a
9364665d5af147608d7cf8cf6e0a7cb9
3
45ab232069d24470b28742e6e817c5f1
RY(theta₆)
e7b1797fbaa346a4938a87038514120a--45ab232069d24470b28742e6e817c5f1
49fba3f186794f77ab6c887ca38b0a71
RX(theta₁₀)
45ab232069d24470b28742e6e817c5f1--49fba3f186794f77ab6c887ca38b0a71
5bd64150344a495280dd76cbc451b645
49fba3f186794f77ab6c887ca38b0a71--5bd64150344a495280dd76cbc451b645
d0af0bbe3f924a63a4e6057373e8cf3a
X
5bd64150344a495280dd76cbc451b645--d0af0bbe3f924a63a4e6057373e8cf3a
d0af0bbe3f924a63a4e6057373e8cf3a--7ed95a6dd3874c6dab8d0be58c683477
8b7a6c6d106447fb8ba21df7653d67b9
RX(theta₁₄)
d0af0bbe3f924a63a4e6057373e8cf3a--8b7a6c6d106447fb8ba21df7653d67b9
3bb164cdf56c4e44b956ede3f010cd75
RY(theta₁₈)
8b7a6c6d106447fb8ba21df7653d67b9--3bb164cdf56c4e44b956ede3f010cd75
16895ab39a2b4b3ab00e1c20acb231ee
RX(theta₂₂)
3bb164cdf56c4e44b956ede3f010cd75--16895ab39a2b4b3ab00e1c20acb231ee
9d4124548a9e4e3284670a42f03d8f74
16895ab39a2b4b3ab00e1c20acb231ee--9d4124548a9e4e3284670a42f03d8f74
580a7ad70cb34cc5a5cead75dd6b8ffa
X
9d4124548a9e4e3284670a42f03d8f74--580a7ad70cb34cc5a5cead75dd6b8ffa
580a7ad70cb34cc5a5cead75dd6b8ffa--5c5ec98609c94701b1b9f877e35474a1
580a7ad70cb34cc5a5cead75dd6b8ffa--a4499e343f414cf7a17f1aaa246739d0
82ea797d9c364424a206ab1dc49d48f9
6c8bed51d572438abac244366af0f5e9
RX(theta₃)
9364665d5af147608d7cf8cf6e0a7cb9--6c8bed51d572438abac244366af0f5e9
7db857f4fc884afeb065a35a1a37ae62
RY(theta₇)
6c8bed51d572438abac244366af0f5e9--7db857f4fc884afeb065a35a1a37ae62
949c05a532f04c4fa631bb863afdee02
RX(theta₁₁)
7db857f4fc884afeb065a35a1a37ae62--949c05a532f04c4fa631bb863afdee02
1b61be0119034bda94f9e163c16f353e
X
949c05a532f04c4fa631bb863afdee02--1b61be0119034bda94f9e163c16f353e
1b61be0119034bda94f9e163c16f353e--5bd64150344a495280dd76cbc451b645
5dac929da6ba4e7396158f45c234e75e
1b61be0119034bda94f9e163c16f353e--5dac929da6ba4e7396158f45c234e75e
a17d5ac839904356a2d9efa80e555e4a
RX(theta₁₅)
5dac929da6ba4e7396158f45c234e75e--a17d5ac839904356a2d9efa80e555e4a
2642fd962df24ab293df26b7fc2f6e1c
RY(theta₁₉)
a17d5ac839904356a2d9efa80e555e4a--2642fd962df24ab293df26b7fc2f6e1c
88a730f0b60c4736b1ce7ec1688e72a9
RX(theta₂₃)
2642fd962df24ab293df26b7fc2f6e1c--88a730f0b60c4736b1ce7ec1688e72a9
56454ff1e8284eb4a5d0ae97aeb3c0a3
X
88a730f0b60c4736b1ce7ec1688e72a9--56454ff1e8284eb4a5d0ae97aeb3c0a3
56454ff1e8284eb4a5d0ae97aeb3c0a3--9d4124548a9e4e3284670a42f03d8f74
f414010df0aa4dc1828f2a7574bcd16d
56454ff1e8284eb4a5d0ae97aeb3c0a3--f414010df0aa4dc1828f2a7574bcd16d
f414010df0aa4dc1828f2a7574bcd16d--82ea797d9c364424a206ab1dc49d48f9
We have specified that the ansatz should have a depth of 2, and the ansatz type is "hea" (Hardware Efficient Ansatz). The ansatz strategy is set to "digital", which means digital gates are being used. One could alternatively use "analog" or "rydberg" as the ansatz strategy.
For full details on the AnsatzConfig
class, see the API documentation .
Defining the QNN from the Configs
To build the QNN, we can now use the QNN
class as a QuantumModel
subtype. In addition to the feature map, ansatz and the observable configs, we can also specify options such as the backend
, diff_mode
, etc. For full details on the QNN
class, see the API documentation or the documentation on the config constructor here .
from qadence import BackendName , DiffMode , QNN
qnn = QNN . from_configs (
register = 4 ,
obs_config = observable_config ,
fm_config = fm_config ,
ansatz_config = ansatz_config ,
backend = BackendName . PYQTORCH ,
diff_mode = DiffMode . AD ,
)
%3
cluster_fbe1d0881c0646a089b6f8c00193021e
Obs.
cluster_712bd05b317a492d854d30d76e793b30
cluster_21f690d1820a4ca2be3952a6b3ecc6ac
Tower Chebyshev FM
cluster_3f9d9bc443b94f60912870299aedf4e3
Tower Chebyshev FM
cluster_969a919dd4884750ae27434a270d7e1e
HEA
c1108cb41f9640c4bf67f2fbf91a830c
0
0bb3ca9218374f7fa5843ff5327a204d
RX(1.0*acos(x))
c1108cb41f9640c4bf67f2fbf91a830c--0bb3ca9218374f7fa5843ff5327a204d
4d3561eca4dc4e3b875fd0b6e6695e1a
1
29ac571d14db4036845d53693351b71c
RX(theta₀)
0bb3ca9218374f7fa5843ff5327a204d--29ac571d14db4036845d53693351b71c
d4a3d9cac2af4d639cbca638a1728adb
RY(theta₄)
29ac571d14db4036845d53693351b71c--d4a3d9cac2af4d639cbca638a1728adb
7873486ddb424c1796a061680c23fd1d
RX(theta₈)
d4a3d9cac2af4d639cbca638a1728adb--7873486ddb424c1796a061680c23fd1d
5f0efae9138e44a0b354fcd16021b309
7873486ddb424c1796a061680c23fd1d--5f0efae9138e44a0b354fcd16021b309
07edc6b962fb455680735876ef3cb113
5f0efae9138e44a0b354fcd16021b309--07edc6b962fb455680735876ef3cb113
9e5e923a3df248bca2a268e7e545e107
RX(theta₁₂)
07edc6b962fb455680735876ef3cb113--9e5e923a3df248bca2a268e7e545e107
4f2789d971934b66b3bb362b53aeb9ce
RY(theta₁₆)
9e5e923a3df248bca2a268e7e545e107--4f2789d971934b66b3bb362b53aeb9ce
6afb8e7de4854726bdd1efb39d234979
RX(theta₂₀)
4f2789d971934b66b3bb362b53aeb9ce--6afb8e7de4854726bdd1efb39d234979
8e311a8cdca141f083845a9f4ee8f63d
6afb8e7de4854726bdd1efb39d234979--8e311a8cdca141f083845a9f4ee8f63d
0b26f47a96864a139c33a75a6d8cfc4d
8e311a8cdca141f083845a9f4ee8f63d--0b26f47a96864a139c33a75a6d8cfc4d
c9fe40262abe4f92a9a672ce4ac4f050
0b26f47a96864a139c33a75a6d8cfc4d--c9fe40262abe4f92a9a672ce4ac4f050
07cc10b7359f4e4394903bd1be25628a
c9fe40262abe4f92a9a672ce4ac4f050--07cc10b7359f4e4394903bd1be25628a
d31f1304419143889af35f70e43b8a32
1f942af79f0342a9992609a6939e5f3d
RX(2.0*acos(x))
4d3561eca4dc4e3b875fd0b6e6695e1a--1f942af79f0342a9992609a6939e5f3d
e127f751f21e4509870a2606987464df
2
e41375a3d3e14f66958afc1e753fb98d
RX(theta₁)
1f942af79f0342a9992609a6939e5f3d--e41375a3d3e14f66958afc1e753fb98d
e52c7092a5924a4c972be25998eb3af3
RY(theta₅)
e41375a3d3e14f66958afc1e753fb98d--e52c7092a5924a4c972be25998eb3af3
a6983444cd2c40f288891df8c09062d8
RX(theta₉)
e52c7092a5924a4c972be25998eb3af3--a6983444cd2c40f288891df8c09062d8
ea68e1ffb88e4e07a7441aca5909966f
X
a6983444cd2c40f288891df8c09062d8--ea68e1ffb88e4e07a7441aca5909966f
ea68e1ffb88e4e07a7441aca5909966f--5f0efae9138e44a0b354fcd16021b309
19557b81ca634f6aa264881115f7f012
ea68e1ffb88e4e07a7441aca5909966f--19557b81ca634f6aa264881115f7f012
8336e8e4cd0542cbb15a94cf472ff1ee
RX(theta₁₃)
19557b81ca634f6aa264881115f7f012--8336e8e4cd0542cbb15a94cf472ff1ee
15cc56aa68724f9885931bb213a55efa
RY(theta₁₇)
8336e8e4cd0542cbb15a94cf472ff1ee--15cc56aa68724f9885931bb213a55efa
17f0021bd9324ef7917b280e59ead2c4
RX(theta₂₁)
15cc56aa68724f9885931bb213a55efa--17f0021bd9324ef7917b280e59ead2c4
d8d3136dd3f54801b764814fd5ada594
X
17f0021bd9324ef7917b280e59ead2c4--d8d3136dd3f54801b764814fd5ada594
d8d3136dd3f54801b764814fd5ada594--8e311a8cdca141f083845a9f4ee8f63d
cbc2275bde884e3f8186203bb4d64c4e
d8d3136dd3f54801b764814fd5ada594--cbc2275bde884e3f8186203bb4d64c4e
25706177a43c497dab3158e41d5747f8
AddBlock
cbc2275bde884e3f8186203bb4d64c4e--25706177a43c497dab3158e41d5747f8
25706177a43c497dab3158e41d5747f8--d31f1304419143889af35f70e43b8a32
99e3d13073ac4f11ba3c6bf7d9fb8c6d
4d12a843310c46018b4d2d84913f5a8c
RX(1.0*acos(2.0*y - 1.0))
e127f751f21e4509870a2606987464df--4d12a843310c46018b4d2d84913f5a8c
3c4ed183a3d54670af5e93ac4167ad53
3
ad4522a3765e4934a1d7f6b7313e0e6d
RX(theta₂)
4d12a843310c46018b4d2d84913f5a8c--ad4522a3765e4934a1d7f6b7313e0e6d
0678029500b548cdbb3a4b439e7d1f9f
RY(theta₆)
ad4522a3765e4934a1d7f6b7313e0e6d--0678029500b548cdbb3a4b439e7d1f9f
848b868191c24f7290705edc50b6513d
RX(theta₁₀)
0678029500b548cdbb3a4b439e7d1f9f--848b868191c24f7290705edc50b6513d
39136de9c6d2449bb387f5714f269024
848b868191c24f7290705edc50b6513d--39136de9c6d2449bb387f5714f269024
998c455b20d24a2f8255c3c3a6b51490
X
39136de9c6d2449bb387f5714f269024--998c455b20d24a2f8255c3c3a6b51490
998c455b20d24a2f8255c3c3a6b51490--19557b81ca634f6aa264881115f7f012
ec97d65633454767ba619025ae5ee19b
RX(theta₁₄)
998c455b20d24a2f8255c3c3a6b51490--ec97d65633454767ba619025ae5ee19b
2c0226142671452c90aefca8f4178e3b
RY(theta₁₈)
ec97d65633454767ba619025ae5ee19b--2c0226142671452c90aefca8f4178e3b
358acefbfefc4070a215e533d9d17f46
RX(theta₂₂)
2c0226142671452c90aefca8f4178e3b--358acefbfefc4070a215e533d9d17f46
34af046bb03e493f900dd61beacd2285
358acefbfefc4070a215e533d9d17f46--34af046bb03e493f900dd61beacd2285
592eafc1d27140778dea4e44409f619b
X
34af046bb03e493f900dd61beacd2285--592eafc1d27140778dea4e44409f619b
592eafc1d27140778dea4e44409f619b--cbc2275bde884e3f8186203bb4d64c4e
cf54e536b12b44549f03d45ba0ee5865
592eafc1d27140778dea4e44409f619b--cf54e536b12b44549f03d45ba0ee5865
cf54e536b12b44549f03d45ba0ee5865--99e3d13073ac4f11ba3c6bf7d9fb8c6d
40b15f170e3c413d85813ec64a84646c
3e890879c9934b9d82f3fa8aad1a6ac7
RX(2.0*acos(2.0*y - 1.0))
3c4ed183a3d54670af5e93ac4167ad53--3e890879c9934b9d82f3fa8aad1a6ac7
ed42a00cc7b04aed81031f2f8cb1971c
RX(theta₃)
3e890879c9934b9d82f3fa8aad1a6ac7--ed42a00cc7b04aed81031f2f8cb1971c
addf4e4b6bf540778a2c3ab07a0e2615
RY(theta₇)
ed42a00cc7b04aed81031f2f8cb1971c--addf4e4b6bf540778a2c3ab07a0e2615
dab9ab8c9c614b43b6f23b781b249693
RX(theta₁₁)
addf4e4b6bf540778a2c3ab07a0e2615--dab9ab8c9c614b43b6f23b781b249693
42c2facbea1e4669b4001b6f6fbf01de
X
dab9ab8c9c614b43b6f23b781b249693--42c2facbea1e4669b4001b6f6fbf01de
42c2facbea1e4669b4001b6f6fbf01de--39136de9c6d2449bb387f5714f269024
c362a331fc0d4644afb193c74b1095ce
42c2facbea1e4669b4001b6f6fbf01de--c362a331fc0d4644afb193c74b1095ce
5736060fe977495686c5ce72a1fe8b71
RX(theta₁₅)
c362a331fc0d4644afb193c74b1095ce--5736060fe977495686c5ce72a1fe8b71
ab968ca0e88f4ff6822710d4244f98f1
RY(theta₁₉)
5736060fe977495686c5ce72a1fe8b71--ab968ca0e88f4ff6822710d4244f98f1
b6893f16a29d40dba26bfb5632a6ac02
RX(theta₂₃)
ab968ca0e88f4ff6822710d4244f98f1--b6893f16a29d40dba26bfb5632a6ac02
363872b49f94401d9ae3fe3bf01b68fc
X
b6893f16a29d40dba26bfb5632a6ac02--363872b49f94401d9ae3fe3bf01b68fc
363872b49f94401d9ae3fe3bf01b68fc--34af046bb03e493f900dd61beacd2285
3c6e57fcb9ef46ce87cdfe89a3f76f59
363872b49f94401d9ae3fe3bf01b68fc--3c6e57fcb9ef46ce87cdfe89a3f76f59
c7c5ca9d0813430c9dd791701b5563e0
3c6e57fcb9ef46ce87cdfe89a3f76f59--c7c5ca9d0813430c9dd791701b5563e0
c7c5ca9d0813430c9dd791701b5563e0--40b15f170e3c413d85813ec64a84646c