Skip to content

Solving MaxCut with QAOA

This tutorial shows how to solve the maximum cut (MaxCut) combinatorial optimization problem on a graph using the Quantum Approximate Optimization Algorithm (QAOA), first introduced by Farhi et al. in 2014 1.

Given an arbitrary graph, the MaxCut problem consists in finding a graph cut which partitions the nodes into two disjoint sets, such that the number of edges in the cut is maximized. This is a very common combinatorial optimization problem known to be computationally hard (NP-hard).

The graph used for this tutorial is an unweighted graph randomly generated using the networkx library with a certain probability \(p\) of having an edge between two arbitrary nodes (known as Erdős–Rényi graph).

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import random

# ensure reproducibility
seed = 42
np.random.seed(seed)
random.seed(seed)

# Create random graph
n_nodes = 4
edge_prob = 0.8
graph = nx.gnp_random_graph(n_nodes, edge_prob)

nx.draw(graph)
2025-04-04T13:35:10.792687 image/svg+xml Matplotlib v3.10.1, https://matplotlib.org/

The goal of the MaxCut algorithm is to maximize the following cost function:

\[\mathcal{C}(p) = \sum_{\alpha}^m \mathcal{C}_{\alpha}(p)\]

where \(p\) is a given cut of the graph, \(\alpha\) is an index over the edges and \(\mathcal{C}_{\alpha}(p)\) is written such that if the nodes connected by the \(\alpha\) edge are in the same set, it returns \(0\), otherwise it returns \(1\). We will represent a cut \(p\) as a bitstring of length \(N\), where \(N\) is the number of nodes, and where the bit in position \(i\) shows to which partition node \(i\) belongs. We assign value 0 to one of the partitions defined by the cut and 1 to the other. Since this choice is arbitrary, every cut is represented by two bitstrings, e.g. "0011" and "1100" are equivalent.

Since in this tutorial we are only dealing with small graphs, we can find the maximum cut by brute force to make sure QAOA works as intended.

# Function to calculate the cost associated with a cut
def calculate_cost(cut: str, graph: nx.graph) -> float:
    """Returns the cost of a given cut (represented by a bitstring)"""
    cost = 0
    for edge in graph.edges():
        (i, j) = edge
        if cut[i] != cut[j]:
            cost += 1
    return cost


# Function to get a binary representation of an int
get_binary = lambda x, n: format(x, "b").zfill(n)

# List of all possible cuts
all_possible_cuts = [bin(k)[2:].rjust(n_nodes, "0") for k in range(2**n_nodes)]

# List with the costs associated to each cut
all_costs = [calculate_cost(cut, graph) for cut in all_possible_cuts]

# Get the maximum cost
maxcost = max(all_costs)

# Get all cuts that correspond to the maximum cost
maxcuts = [get_binary(i, n_nodes) for i, j in enumerate(all_costs) if j == maxcost]
print(f"The maximum cut is represented by the bitstrings {maxcuts}, with a cost of {maxcost}")
The maximum cut is represented by the bitstrings ['0011', '0101', '0110', '1001', '1010', '1100'], with a cost of 4

The QAOA quantum circuit

The Max-Cut problem can be solved by using the QAOA algorithm. QAOA belongs to the class of Variational Quantum Algorithms (VQAs), which means that its quantum circuit contains a certain number of parametrized quantum gates that need to be optimized with a classical optimizer. The QAOA circuit is composed of two operators:

  • The cost operator \(U_c\): a circuit generated by the cost Hamiltonian which encodes the cost function described above into a quantum circuit. The solution to the optimization problem is encoded in the ground state of the cost Hamiltonian \(H_c\). The cost operator is simply the evolution of the cost Hamiltonian parametrized by a variational parameter \(\gamma\) so that \(U_c = e^{i\gamma H_c}.\)
  • The mixing operator \(U_b\): a simple set of single-qubit rotations with adjustable angles which are tuned during the classical optimization loop to minimize the cost

The cost Hamiltonian of the MaxCut problem can be written as:

\[H_c = \frac12 \sum_{\langle i,j\rangle} (\mathbb{1} - Z_iZ_j)\]

where \(\langle i,j\rangle\) represents the edge between nodes \(i\) and \(j\). The solution of the MaxCut problem is encoded in the ground state of the above Hamiltonian.

The QAOA quantum circuit consists of a number of layers, each layer containing a cost and a mixing operator. Below, the QAOA quantum circuit is defined using qadence operations. First, a layer of Hadamard gates is applied to all qubits to prepare the initial state \(|+\rangle ^{\otimes n}\). The cost operator of each layer can be built "manually", implementing the \(e^{iZZ\gamma}\) terms with CNOTs and a \(\rm{RZ}(2\gamma)\) rotation, or it can also be automatically decomposed into digital single and two-qubits operations via the .digital_decomposition() method. The decomposition is exact since the Hamiltonian generator is diagonal.

from qadence import tag, kron, chain, RX, RZ, Z, H, CNOT, I, add
from qadence import HamEvo, QuantumCircuit, Parameter

n_qubits = graph.number_of_nodes()
n_edges = graph.number_of_edges()
n_layers = 6

# Generate the cost Hamiltonian
zz_ops = add(Z(edge[0]) @ Z(edge[1]) for edge in graph.edges)
cost_ham = 0.5 * (n_edges * kron(I(i) for i in range(n_qubits)) - zz_ops)


# QAOA circuit
def build_qaoa_circuit(n_qubits, n_layers, graph):
    layers = []
    # Layer of Hadamards
    initial_layer = kron(H(i) for i in range(n_qubits))
    layers.append(initial_layer)
    for layer in range(n_layers):

        # cost layer with digital decomposition
        # cost_layer = HamEvo(cost_ham, f"g{layer}").digital_decomposition(approximation="basic")
        cost_layer = []
        for edge in graph.edges():
            (q0, q1) = edge
            zz_term = chain(
                CNOT(q0, q1),
                RZ(q1, Parameter(f"g{layer}")),
                CNOT(q0, q1),
            )
            cost_layer.append(zz_term)
        cost_layer = chain(*cost_layer)
        cost_layer = tag(cost_layer, "cost")

        # mixing layer with single qubit rotations
        mixing_layer = kron(RX(i, f"b{layer}") for i in range(n_qubits))
        mixing_layer = tag(mixing_layer, "mixing")

        # putting all together in a single ChainBlock
        layers.append(chain(cost_layer, mixing_layer))

    final_b = chain(*layers)
    return QuantumCircuit(n_qubits, final_b)


circuit = build_qaoa_circuit(n_qubits, n_layers, graph)

# Print a single layer of the circuit
%3 cluster_af4fafed509141bd92be6058f67e676e mixing cluster_a62f972847c24eb1809b4bb78aaff08d cost 8864cdae9858493b8d0870b6f01011ab 0 57840cf70164492388f320f7d2fb1936 H 8864cdae9858493b8d0870b6f01011ab--57840cf70164492388f320f7d2fb1936 c5f1f7624b494b77939b86f97b7f6b7b 1 2a078032d9234f58a61320ea5da27c9a 57840cf70164492388f320f7d2fb1936--2a078032d9234f58a61320ea5da27c9a 0f217efdbb3c4cd49e16c680293c54f8 2a078032d9234f58a61320ea5da27c9a--0f217efdbb3c4cd49e16c680293c54f8 174aac247eed479a9bee35f87ca844c9 0f217efdbb3c4cd49e16c680293c54f8--174aac247eed479a9bee35f87ca844c9 4c1d4e279e86431ba933f4bdc8dac38b 174aac247eed479a9bee35f87ca844c9--4c1d4e279e86431ba933f4bdc8dac38b a578c0abd9644a1eaf3da613f530fa83 4c1d4e279e86431ba933f4bdc8dac38b--a578c0abd9644a1eaf3da613f530fa83 eb464cdc0a9f4b4cb6c21a8292515a4a a578c0abd9644a1eaf3da613f530fa83--eb464cdc0a9f4b4cb6c21a8292515a4a 6b71a5de85f744e3b79d37dad299cd60 eb464cdc0a9f4b4cb6c21a8292515a4a--6b71a5de85f744e3b79d37dad299cd60 a58a8777c12c47c5a2013c89c451cdaa 6b71a5de85f744e3b79d37dad299cd60--a58a8777c12c47c5a2013c89c451cdaa 5d16fa5616324192ae2659a42997b0ae a58a8777c12c47c5a2013c89c451cdaa--5d16fa5616324192ae2659a42997b0ae c3b51c949d714afda884f60e77c85332 5d16fa5616324192ae2659a42997b0ae--c3b51c949d714afda884f60e77c85332 9ffdedbf8b284d6aa4873fd552ba66b8 c3b51c949d714afda884f60e77c85332--9ffdedbf8b284d6aa4873fd552ba66b8 cb17ef0ced1b46d0a4b81fed4848038f 9ffdedbf8b284d6aa4873fd552ba66b8--cb17ef0ced1b46d0a4b81fed4848038f 019be9a66165488692c7586636419774 cb17ef0ced1b46d0a4b81fed4848038f--019be9a66165488692c7586636419774 306f194040614f0aa9d97490ebd890dc 019be9a66165488692c7586636419774--306f194040614f0aa9d97490ebd890dc 6703d520d6284c2dab3ccf18aa3e3947 306f194040614f0aa9d97490ebd890dc--6703d520d6284c2dab3ccf18aa3e3947 86d0fee5154848ff935aa4f523b03869 6703d520d6284c2dab3ccf18aa3e3947--86d0fee5154848ff935aa4f523b03869 83a411cbea0b4a6cbbfac52672cffbc6 86d0fee5154848ff935aa4f523b03869--83a411cbea0b4a6cbbfac52672cffbc6 7174cfc0e0824b78b1d019fd8b337d90 83a411cbea0b4a6cbbfac52672cffbc6--7174cfc0e0824b78b1d019fd8b337d90 75fc9645bc254353bc685ae7d03a9f89 RX(b0) 7174cfc0e0824b78b1d019fd8b337d90--75fc9645bc254353bc685ae7d03a9f89 6aa9d5f157fd4747b67ba061685a26fe 75fc9645bc254353bc685ae7d03a9f89--6aa9d5f157fd4747b67ba061685a26fe cdbd82f76d7846b980fc3b626c3651ec e609a19613a84385abaa5686104f1889 H c5f1f7624b494b77939b86f97b7f6b7b--e609a19613a84385abaa5686104f1889 9a61bda3cb8a4d9681e4539d894693a9 2 5493b31d1b7e4d268e16f6ae006b0de2 X e609a19613a84385abaa5686104f1889--5493b31d1b7e4d268e16f6ae006b0de2 5493b31d1b7e4d268e16f6ae006b0de2--2a078032d9234f58a61320ea5da27c9a 408e9d0637c148bba339d3d72121f3b5 RZ(g0) 5493b31d1b7e4d268e16f6ae006b0de2--408e9d0637c148bba339d3d72121f3b5 6f13e2c2ca8e48a49173811c1013d046 X 408e9d0637c148bba339d3d72121f3b5--6f13e2c2ca8e48a49173811c1013d046 6f13e2c2ca8e48a49173811c1013d046--174aac247eed479a9bee35f87ca844c9 9a5ba1600b5645149e14d6fe2a13c35a 6f13e2c2ca8e48a49173811c1013d046--9a5ba1600b5645149e14d6fe2a13c35a da69d358beb147ffa2dc137a934ad64d 9a5ba1600b5645149e14d6fe2a13c35a--da69d358beb147ffa2dc137a934ad64d 307b5d98d02542b789b7fc4f173d9029 da69d358beb147ffa2dc137a934ad64d--307b5d98d02542b789b7fc4f173d9029 54cf4a73ce764e5e8e4366ff3fd0276c 307b5d98d02542b789b7fc4f173d9029--54cf4a73ce764e5e8e4366ff3fd0276c 5c53b88e231f435bb7e5793f92462a7d 54cf4a73ce764e5e8e4366ff3fd0276c--5c53b88e231f435bb7e5793f92462a7d 875c17827cb0428abcc6a9fe77e089e6 5c53b88e231f435bb7e5793f92462a7d--875c17827cb0428abcc6a9fe77e089e6 60675c03b655444c97c98df92cde3135 875c17827cb0428abcc6a9fe77e089e6--60675c03b655444c97c98df92cde3135 cf077f5abd6b42b4a1b42c1becae67a3 60675c03b655444c97c98df92cde3135--cf077f5abd6b42b4a1b42c1becae67a3 931df369290d4b75b1817da5dbe4f334 cf077f5abd6b42b4a1b42c1becae67a3--931df369290d4b75b1817da5dbe4f334 d58b7dd2494e42809bbcb7699dc8ec45 931df369290d4b75b1817da5dbe4f334--d58b7dd2494e42809bbcb7699dc8ec45 001859d564444186b348afae79aab503 d58b7dd2494e42809bbcb7699dc8ec45--001859d564444186b348afae79aab503 fde883895ee24851b81f88f363becf52 001859d564444186b348afae79aab503--fde883895ee24851b81f88f363becf52 36ac5d521283491285c41839a381dc09 fde883895ee24851b81f88f363becf52--36ac5d521283491285c41839a381dc09 04fdd8ea66104765a813e40fa5bfc0ab 36ac5d521283491285c41839a381dc09--04fdd8ea66104765a813e40fa5bfc0ab f226be1d7c2a4a5b910ca8e054023912 04fdd8ea66104765a813e40fa5bfc0ab--f226be1d7c2a4a5b910ca8e054023912 e85cec4952b14a38992f0d0cf58dab27 RX(b0) f226be1d7c2a4a5b910ca8e054023912--e85cec4952b14a38992f0d0cf58dab27 e85cec4952b14a38992f0d0cf58dab27--cdbd82f76d7846b980fc3b626c3651ec 31c8ef04465b446691677b677b130f39 7f8b4b3a80454ec3a9bf5fa23e9f1f03 H 9a61bda3cb8a4d9681e4539d894693a9--7f8b4b3a80454ec3a9bf5fa23e9f1f03 ad58b9eca4fd4d32bbac63f722b23b58 3 2d725a01467e47af9b47fe169205cbc1 7f8b4b3a80454ec3a9bf5fa23e9f1f03--2d725a01467e47af9b47fe169205cbc1 245e66eba72648c582bc904c5e7a71ab 2d725a01467e47af9b47fe169205cbc1--245e66eba72648c582bc904c5e7a71ab bae481783db2442685de640dff96734a 245e66eba72648c582bc904c5e7a71ab--bae481783db2442685de640dff96734a d6685af3f72643fbb1f7b86f0454de6e X bae481783db2442685de640dff96734a--d6685af3f72643fbb1f7b86f0454de6e d6685af3f72643fbb1f7b86f0454de6e--4c1d4e279e86431ba933f4bdc8dac38b d99c656e57a74888a41ff619628c6fab RZ(g0) d6685af3f72643fbb1f7b86f0454de6e--d99c656e57a74888a41ff619628c6fab abb5b4ed718c4550a46a7157df5c82bf X d99c656e57a74888a41ff619628c6fab--abb5b4ed718c4550a46a7157df5c82bf abb5b4ed718c4550a46a7157df5c82bf--eb464cdc0a9f4b4cb6c21a8292515a4a 08e00c563a804a049c41a20875d025d1 abb5b4ed718c4550a46a7157df5c82bf--08e00c563a804a049c41a20875d025d1 5d0199e82e3d4ba9baa1e9e70c40b5a8 08e00c563a804a049c41a20875d025d1--5d0199e82e3d4ba9baa1e9e70c40b5a8 7b9e33ce164d4734a64951bb99bc680b 5d0199e82e3d4ba9baa1e9e70c40b5a8--7b9e33ce164d4734a64951bb99bc680b 1d8cdfe92a094bbf844dcbe6d18e7a01 X 7b9e33ce164d4734a64951bb99bc680b--1d8cdfe92a094bbf844dcbe6d18e7a01 1d8cdfe92a094bbf844dcbe6d18e7a01--60675c03b655444c97c98df92cde3135 dfaa3ca7051c4dbe820be8996b8b7133 RZ(g0) 1d8cdfe92a094bbf844dcbe6d18e7a01--dfaa3ca7051c4dbe820be8996b8b7133 45b5f5f1a9ff4ac89df89ea88e518ec0 X dfaa3ca7051c4dbe820be8996b8b7133--45b5f5f1a9ff4ac89df89ea88e518ec0 45b5f5f1a9ff4ac89df89ea88e518ec0--931df369290d4b75b1817da5dbe4f334 ee039bf2155a49b8b00d4dfde40c3e70 45b5f5f1a9ff4ac89df89ea88e518ec0--ee039bf2155a49b8b00d4dfde40c3e70 cba09cfe3a8a406aa6960b2405407bfa ee039bf2155a49b8b00d4dfde40c3e70--cba09cfe3a8a406aa6960b2405407bfa ffe18ad01ce248e59a736b1955b88192 cba09cfe3a8a406aa6960b2405407bfa--ffe18ad01ce248e59a736b1955b88192 77a5b8297b24497481404738b8e57358 ffe18ad01ce248e59a736b1955b88192--77a5b8297b24497481404738b8e57358 a9ce22bbaeab4973bb71f10447ddae71 77a5b8297b24497481404738b8e57358--a9ce22bbaeab4973bb71f10447ddae71 2aea7b1dac334a73bdae7a4bb372ab43 a9ce22bbaeab4973bb71f10447ddae71--2aea7b1dac334a73bdae7a4bb372ab43 7627c83310574f32a63a37c91abed43d RX(b0) 2aea7b1dac334a73bdae7a4bb372ab43--7627c83310574f32a63a37c91abed43d 7627c83310574f32a63a37c91abed43d--31c8ef04465b446691677b677b130f39 7c670e97be4e4810a9690570a7b8a042 a0c80b11ddd24a6aaa07f6b89da13082 H ad58b9eca4fd4d32bbac63f722b23b58--a0c80b11ddd24a6aaa07f6b89da13082 fa47577afbfd4343a83549cf67f02901 a0c80b11ddd24a6aaa07f6b89da13082--fa47577afbfd4343a83549cf67f02901 7ecb8de64b0545a988acafb9714538e2 fa47577afbfd4343a83549cf67f02901--7ecb8de64b0545a988acafb9714538e2 39cee41c1c244a0496dd26c4ab789322 7ecb8de64b0545a988acafb9714538e2--39cee41c1c244a0496dd26c4ab789322 d5a554a3b4374e32a2d213ed818d3c15 39cee41c1c244a0496dd26c4ab789322--d5a554a3b4374e32a2d213ed818d3c15 91fba44d04ea4b969dc8554057de94fc d5a554a3b4374e32a2d213ed818d3c15--91fba44d04ea4b969dc8554057de94fc 4d9bc08ab2b34da1aa051d0423db64b6 91fba44d04ea4b969dc8554057de94fc--4d9bc08ab2b34da1aa051d0423db64b6 ab1c0e3e945548f0ba750c46293771a3 X 4d9bc08ab2b34da1aa051d0423db64b6--ab1c0e3e945548f0ba750c46293771a3 ab1c0e3e945548f0ba750c46293771a3--6b71a5de85f744e3b79d37dad299cd60 d4413bb2f1a943999e54eec4e3c90973 RZ(g0) ab1c0e3e945548f0ba750c46293771a3--d4413bb2f1a943999e54eec4e3c90973 55c70e50d0b44bdfb6398d60336d9b0b X d4413bb2f1a943999e54eec4e3c90973--55c70e50d0b44bdfb6398d60336d9b0b 55c70e50d0b44bdfb6398d60336d9b0b--5d16fa5616324192ae2659a42997b0ae 7748a13d0f40418687a8fc2e0ba3829c 55c70e50d0b44bdfb6398d60336d9b0b--7748a13d0f40418687a8fc2e0ba3829c c16a478ac0494eaca4dbbdc54dd7cfe4 7748a13d0f40418687a8fc2e0ba3829c--c16a478ac0494eaca4dbbdc54dd7cfe4 73045eec23ee479eaf543a64f2ca58a6 c16a478ac0494eaca4dbbdc54dd7cfe4--73045eec23ee479eaf543a64f2ca58a6 c03f14393ea94ce5992a5816062809ba X 73045eec23ee479eaf543a64f2ca58a6--c03f14393ea94ce5992a5816062809ba c03f14393ea94ce5992a5816062809ba--d58b7dd2494e42809bbcb7699dc8ec45 e862e990b73049e4a5ac4ff25a50676d RZ(g0) c03f14393ea94ce5992a5816062809ba--e862e990b73049e4a5ac4ff25a50676d b9a2b80d0d694deb8c2ea957aa32db06 X e862e990b73049e4a5ac4ff25a50676d--b9a2b80d0d694deb8c2ea957aa32db06 b9a2b80d0d694deb8c2ea957aa32db06--fde883895ee24851b81f88f363becf52 935e3c18978243b9aa13d6231f312509 X b9a2b80d0d694deb8c2ea957aa32db06--935e3c18978243b9aa13d6231f312509 935e3c18978243b9aa13d6231f312509--77a5b8297b24497481404738b8e57358 6a238a2ac8714f33a10d68945e630de7 RZ(g0) 935e3c18978243b9aa13d6231f312509--6a238a2ac8714f33a10d68945e630de7 9b8c39585b864d85b9dab1715b9bd972 X 6a238a2ac8714f33a10d68945e630de7--9b8c39585b864d85b9dab1715b9bd972 9b8c39585b864d85b9dab1715b9bd972--2aea7b1dac334a73bdae7a4bb372ab43 e2c514fa6a99478fae41c1ec81cc1661 RX(b0) 9b8c39585b864d85b9dab1715b9bd972--e2c514fa6a99478fae41c1ec81cc1661 e2c514fa6a99478fae41c1ec81cc1661--7c670e97be4e4810a9690570a7b8a042

Train the QAOA circuit to solve MaxCut

Given the QAOA circuit above, one can construct the associated Qadence QuantumModel and train it using standard gradient based optimization.

The loss function to be minimized reads:

\[\mathcal{L} =-\langle \psi | H_c| \psi \rangle= -\frac12 \sum_{\langle i,j\rangle} \left(1 - \langle \psi | Z_i Z_j | \psi \rangle \right)\]

where \(|\psi\rangle(\beta, \gamma)\) is the wavefunction obtained by running the QAQA quantum circuit and the sum runs over the edges of the graph \(\langle i,j\rangle\).

import torch
from qadence import QuantumModel

torch.manual_seed(seed)


def loss_function(model: QuantumModel):
    # The loss corresponds to the expectation
    # value of the cost Hamiltonian
    return -1.0 * model.expectation().squeeze()


# initialize the parameters to random values
model = QuantumModel(circuit, observable=cost_ham)
model.reset_vparams(torch.rand(model.num_vparams))
initial_loss = loss_function(model)
print(f"Initial loss: {initial_loss}")

# train the model
n_epochs = 100
lr = 0.1

optimizer = torch.optim.Adam(model.parameters(), lr=lr)

for i in range(n_epochs):
    optimizer.zero_grad()
    loss = loss_function(model)
    loss.backward()
    optimizer.step()
    if (i + 1) % (n_epochs // 10) == 0:
        print(f"MaxCut cost at iteration {i+1}: {-loss.item()}")
Initial loss: -2.1782381363858794
MaxCut cost at iteration 10: 3.7470706807026417
MaxCut cost at iteration 20: 3.8378810288930216
MaxCut cost at iteration 30: 3.9424197899236133
MaxCut cost at iteration 40: 3.9981256255766002
MaxCut cost at iteration 50: 3.996470528508214
MaxCut cost at iteration 60: 3.9991374608876606
MaxCut cost at iteration 70: 3.9994678542919555
MaxCut cost at iteration 80: 3.999872558672829
MaxCut cost at iteration 90: 3.9999475834121063
MaxCut cost at iteration 100: 3.9999793311641003

Qadence offers some convenience functions to implement this training loop with advanced logging and metrics track features. You can refer to this tutorial for more details.

Results

Given the trained quantum model, one needs to sample the resulting quantum state to recover the bitstring with the highest probability which corresponds to the maximum cut of the graph.

samples = model.sample(n_shots=100)[0]
most_frequent = max(samples, key=samples.get)

print(f"Most frequently sampled bitstring corresponding to the maximum cut: {most_frequent}")

# let's now draw the cut obtained with the QAOA procedure
colors = []
labels = {}
for node, b in zip(graph.nodes(), most_frequent):
    colors.append("green") if int(b) == 0 else colors.append("red")
    labels[node] = "A" if int(b) == 0 else "B"

nx.draw_networkx(graph, node_color=colors, with_labels=True, labels=labels)
Most frequently sampled bitstring corresponding to the maximum cut: 1001 2025-04-04T13:35:15.219897 image/svg+xml Matplotlib v3.10.1, https://matplotlib.org/

References


  1. Farhi et al. - A Quantum Approximate Optimization Algorithm