Quantum models
QuantumModel(circuit, observable=None, backend=BackendName.PYQTORCH, diff_mode=DiffMode.AD, measurement=None, noise=None, mitigation=None, configuration=None)
Bases: Module
The central class of qadence that executes QuantumCircuit
s and make them differentiable.
This class should be used as base class for any new quantum model supported in the qadence framework for information on the implementation of custom models see here.
Initialize a generic QuantumModel instance.
PARAMETER | DESCRIPTION |
---|---|
circuit |
The circuit that is executed.
TYPE:
|
observable |
Optional observable(s) that are used only in the
TYPE:
|
backend |
A backend for circuit execution.
TYPE:
|
diff_mode |
A differentiability mode. Parameter shift based modes work on all backends. AD based modes only on PyTorch based backends.
TYPE:
|
measurement |
Optional measurement protocol. If None, use exact expectation value with a statevector simulator.
TYPE:
|
configuration |
Configuration for the backend.
TYPE:
|
noise |
A noise model to use.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
if the |
Source code in qadence/model.py
in_features: int
property
Number of inputs.
num_vparams: int
property
The number of variational parameters.
out_features: int | None
property
Number of outputs.
vals_vparams: Tensor
property
Dictionary with parameters which are actually updated during optimization.
assign_parameters(values)
Return the final, assigned circuit that is used in e.g. backend.run
.
expectation(values={}, observable=None, state=None, measurement=None, noise=None, mitigation=None, endianness=Endianness.BIG)
Compute expectation using the given backend.
RETURNS | DESCRIPTION |
---|---|
Tensor
|
A torch.Tensor of shape n_batches x n_obs |
Source code in qadence/model.py
reset_vparams(values)
Reset all the variational parameters with a given list of values.
Source code in qadence/model.py
Bases: QuantumModel
Quantum neural network model for n-dimensional inputs.
Examples:
import torch
from qadence import QuantumCircuit, QNN, Z
from qadence import hea, feature_map, hamiltonian_factory, kron
# create the circuit
n_qubits, depth = 2, 4
fm = kron(
feature_map(1, support=(0,), param="x"),
feature_map(1, support=(1,), param="y")
)
ansatz = hea(n_qubits=n_qubits, depth=depth)
circuit = QuantumCircuit(n_qubits, fm, ansatz)
obs_base = hamiltonian_factory(n_qubits, detuning=Z)
# the QNN will yield two outputs
obs = [2.0 * obs_base, 4.0 * obs_base]
# initialize and use the model
qnn = QNN(circuit, obs, inputs=["x", "y"])
y = qnn(torch.rand(3, 2))
Initialize the QNN.
The number of inputs is determined by the feature parameters in the input quantum circuit while the number of outputs is determined by how many observables are provided as input
PARAMETER | DESCRIPTION |
---|---|
circuit |
The quantum circuit to use for the QNN.
TYPE:
|
observable |
The observable.
TYPE:
|
backend |
The chosen quantum backend.
TYPE:
|
diff_mode |
The differentiation engine to use. Choices 'gpsr' or 'ad'.
TYPE:
|
measurement |
optional measurement protocol. If None, use exact expectation value with a statevector simulator
TYPE:
|
noise |
A noise model to use.
TYPE:
|
configuration |
optional configuration for the backend
TYPE:
|
inputs |
List that indicates the order of variables of the tensors that are passed
to the model. Given input tensors
TYPE:
|
input_diff_mode |
The differentiation mode for the input tensor.
TYPE:
|
Source code in qadence/ml_tools/models.py
forward(values=None, state=None, measurement=None, noise=None, endianness=Endianness.BIG)
Forward pass of the model.
This returns the (differentiable) expectation value of the given observable
operator defined in the constructor. Differently from the base QuantumModel
class, the QNN accepts also a tensor as input for the forward pass. The
tensor is expected to have shape: n_batches x in_features
where n_batches
is the number of data points and in_features
is the dimensionality of the problem
The output of the forward pass is the expectation value of the input
observable(s). If a single observable is given, the output shape is
n_batches
while if multiple observables are given the output shape
is instead n_batches x n_observables
PARAMETER | DESCRIPTION |
---|---|
values |
the values of the feature parameters
TYPE:
|
state |
Initial state.
TYPE:
|
measurement |
optional measurement protocol. If None, use exact expectation value with a statevector simulator
TYPE:
|
noise |
A noise model to use.
TYPE:
|
endianness |
Endianness of the resulting bit strings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
a tensor with the expectation value of the observables passed in the constructor of the model
TYPE:
|
Source code in qadence/ml_tools/models.py
from_configs(register, fm_config, ansatz_config, obs_config)
classmethod
Create a QNN from a set of configurations.
PARAMETER | DESCRIPTION |
---|---|
register |
The number of qubits or a register object.
TYPE:
|
fm_config |
The configuration for the feature map.
TYPE:
|
ansatz_config |
The configuration for the ansatz.
TYPE:
|
obs_config |
The configuration for the observable.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
QNN
|
A QNN object. |
Example:
import torch
from qadence.ml_tools.config import AnsatzConfig, FeatureMapConfig
from qadence.ml_tools import QNN
from qadence.constructors import ObservableConfig
from qadence.operations import Z
from qadence.types import (
AnsatzType, BasisSet, ReuploadScaling, ObservableTransform, Strategy
)
register = 4
fm_config = FeatureMapConfig(
num_features=2,
inputs=["x", "y"],
basis_set=BasisSet.FOURIER,
reupload_scaling=ReuploadScaling.CONSTANT,
feature_range={
"x": (-1.0, 1.0),
"y": (0.0, 1.0),
},
)
ansatz_config = AnsatzConfig(
depth=2,
ansatz_type=AnsatzType.HEA,
ansatz_strategy=Strategy.DIGITAL,
)
obs_config = ObservableConfig(
detuning=Z,
scale=5.0,
shift=0.0,
transformation_type=ObservableTransform.SCALE,
trainable_transform=None,
)
qnn = QNN.from_configs(register, fm_config, ansatz_config, obs_config)
x = torch.rand(2, 2)
y = qnn(x)