Backends
Backends allow execution of Qadence abstract quantum circuits. They could be chosen from a variety of simulators, emulators and hardware
and can enable circuit differentiability. The primary way to interact and configure
a backend is via the high-level API QuantumModel
.
Not all backends are equivalent
Not all backends support the same set of operations, especially while executing analog blocks. Qadence will throw descriptive errors in such cases.
Execution backends
PyQTorch: An efficient, large-scale simulator designed for
quantum machine learning, seamlessly integrated with the popular PyTorch deep learning framework for automatic differentiability.
It also offers analog computing for time-independent pulses. See PyQTorchBackend
.
Pulser: A Python library for pulse-level/analog control of
neutral atom devices. Execution via QuTiP. See PulserBackend
.
More: Proprietary Qadence extensions provide more high-performance backends based on tensor networks or differentiation engines.
For more enquiries, please contact: info@pasqal.com
.
Differentiation backend
The DifferentiableBackend
class enables different differentiation modes
for the given backend. This can be chosen from two types:
- Automatic differentiation (AD): available for PyTorch based backends (PyQTorch).
- Parameter Shift Rules (PSR): available for all backends. See this section for more information on differentiability and PSR.
In practice, only a diff_mode
should be provided in the QuantumModel
. Please note that diff_mode
defaults to None
:
import sympy
import torch
from qadence import Parameter, RX, RZ, Z, CNOT, QuantumCircuit, QuantumModel, chain, BackendName, DiffMode
x = Parameter("x", trainable=False)
y = Parameter("y", trainable=False)
fm = chain(
RX(0, 3 * x),
RX(0, x),
RZ(1, sympy.exp(y)),
RX(0, 3.14),
RZ(1, "theta")
)
ansatz = CNOT(0, 1)
block = chain(fm, ansatz)
circuit = QuantumCircuit(2, block)
observable = Z(0)
# DiffMode.GPSR is available for any backend.
# DiffMode.AD is only available for natively differentiable backends.
model = QuantumModel(circuit, observable, backend=BackendName.PYQTORCH, diff_mode=DiffMode.GPSR)
# Get some values for the feature parameters.
values = {"x": (x := torch.tensor([0.5], requires_grad=True)), "y": torch.tensor([0.1])}
# Compute expectation.
exp = model.expectation(values)
# Differentiate the expectation wrt x.
dexp_dx = torch.autograd.grad(exp, x, torch.ones_like(exp))
Low-level backend_factory
interface
Every backend in Qadence inherits from the abstract Backend
class:
Backend
and implement the following methods:
run
: propagate the initial state according to the quantum circuit and return the final wavefunction object.sample
: sample from a circuit.expectation
: computes the expectation of a circuit given an observable.convert
: convert the abstractQuantumCircuit
object to its backend-native representation including a backend specific parameter embedding function.
Backends are purely functional objects which take as input the values for the circuit parameters and return the desired output from a call to a method. In order to use a backend directly, embedded parameters must be supplied as they are returned by the backend specific embedding function.
Here is a simple demonstration of the use of the Braket backend to execute a circuit in non-differentiable mode:
from qadence import QuantumCircuit, FeatureParameter, RX, RZ, CNOT, hea, chain
# Construct a feature map.
x = FeatureParameter("x")
z = FeatureParameter("y")
fm = chain(RX(0, 3 * x), RZ(1, z), CNOT(0, 1))
# Construct a circuit with an hardware-efficient ansatz.
circuit = QuantumCircuit(3, fm, hea(3,1))
The abstract QuantumCircuit
can now be converted to its native representation via the Braket
backend.
from qadence import backend_factory
# Use only Braket in non-differentiable mode:
backend = backend_factory("braket")
# The `Converted` object
# (contains a `ConvertedCircuit` with the original and native representation)
conv = backend.convert(circuit)
conv.circuit.original = ChainBlock(0,1,2)
├── ChainBlock(0,1)
│ ├── RX(0) [params: ['3*x']]
│ ├── RZ(1) [params: ['y']]
│ └── CNOT(0, 1)
└── ChainBlock(0,1,2) [tag: HEA]
├── ChainBlock(0,1,2)
│ ├── KronBlock(0,1,2)
│ │ ├── RX(0) [params: ['theta_0']]
│ │ ├── RX(1) [params: ['theta_1']]
│ │ └── RX(2) [params: ['theta_2']]
│ ├── KronBlock(0,1,2)
│ │ ├── RY(0) [params: ['theta_3']]
│ │ ├── RY(1) [params: ['theta_4']]
│ │ └── RY(2) [params: ['theta_5']]
│ └── KronBlock(0,1,2)
│ ├── RX(0) [params: ['theta_6']]
│ ├── RX(1) [params: ['theta_7']]
│ └── RX(2) [params: ['theta_8']]
└── ChainBlock(0,1,2)
├── KronBlock(0,1)
│ └── CNOT(0, 1)
└── KronBlock(1,2)
└── CNOT(1, 2)
conv.circuit.native = Circuit('instructions': [Instruction('operator': Rx('angle': 86bec2fe-63b9-49d2-ba4c-3cb560014067, 'qubit_count': 1), 'target': QubitSet([Qubit(0)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rz('angle': 483d1388-b3f2-4151-9890-a5b6be014fc2, 'qubit_count': 1), 'target': QubitSet([Qubit(1)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0), Qubit(1)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rx('angle': 0e263f47-7fa4-453f-bf5d-7819a234c226, 'qubit_count': 1), 'target': QubitSet([Qubit(0)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rx('angle': 315ca431-5f4d-4a74-ae62-e7a71af50d82, 'qubit_count': 1), 'target': QubitSet([Qubit(1)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rx('angle': 5eb4be10-484d-49ca-a989-64ac009b4fe0, 'qubit_count': 1), 'target': QubitSet([Qubit(2)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Ry('angle': ccda8914-8b3f-4d9d-8bd3-a8d46729f254, 'qubit_count': 1), 'target': QubitSet([Qubit(0)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Ry('angle': 76e02756-169c-41ae-b1a6-3521d3eda9ce, 'qubit_count': 1), 'target': QubitSet([Qubit(1)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Ry('angle': 1134c8bb-908f-460e-8092-13105b7c6167, 'qubit_count': 1), 'target': QubitSet([Qubit(2)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rx('angle': 8338a4ee-c44b-4759-85c1-cbd30205f41e, 'qubit_count': 1), 'target': QubitSet([Qubit(0)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rx('angle': d03adb87-258f-47e4-a76f-2e040cea7296, 'qubit_count': 1), 'target': QubitSet([Qubit(1)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rx('angle': 1fba3957-a941-4d39-8a47-0a05545508b7, 'qubit_count': 1), 'target': QubitSet([Qubit(2)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0), Qubit(1)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(1), Qubit(2)]), 'control': QubitSet([]), 'control_state': (), 'power': 1)])
Additionally, Converted
contains all fixed and variational parameters, as well as an embedding
function which accepts feature parameters to construct a dictionary of circuit native parameters.
These are needed as each backend uses a different representation of the circuit parameters:
import torch
# Contains fixed parameters and variational (from the HEA)
conv.params
inputs = {"x": torch.tensor([1., 1.]), "y":torch.tensor([2., 2.])}
# get all circuit parameters (including feature params)
embedded = conv.embedding_fn(conv.params, inputs)
conv.params = {
theta_5: tensor([0.4747], requires_grad=True)
theta_4: tensor([0.0464], requires_grad=True)
theta_6: tensor([0.4416], requires_grad=True)
theta_0: tensor([0.5831], requires_grad=True)
theta_8: tensor([0.8646], requires_grad=True)
theta_1: tensor([0.0745], requires_grad=True)
theta_3: tensor([0.2245], requires_grad=True)
theta_2: tensor([0.5752], requires_grad=True)
theta_7: tensor([0.0038], requires_grad=True)
}
embedded = {
86bec2fe-63b9-49d2-ba4c-3cb560014067: tensor([3., 3.], grad_fn=<ViewBackward0>)
483d1388-b3f2-4151-9890-a5b6be014fc2: tensor([2., 2.])
0e263f47-7fa4-453f-bf5d-7819a234c226: tensor([0.5831], grad_fn=<ViewBackward0>)
315ca431-5f4d-4a74-ae62-e7a71af50d82: tensor([0.0745], grad_fn=<ViewBackward0>)
5eb4be10-484d-49ca-a989-64ac009b4fe0: tensor([0.5752], grad_fn=<ViewBackward0>)
ccda8914-8b3f-4d9d-8bd3-a8d46729f254: tensor([0.2245], grad_fn=<ViewBackward0>)
76e02756-169c-41ae-b1a6-3521d3eda9ce: tensor([0.0464], grad_fn=<ViewBackward0>)
1134c8bb-908f-460e-8092-13105b7c6167: tensor([0.4747], grad_fn=<ViewBackward0>)
8338a4ee-c44b-4759-85c1-cbd30205f41e: tensor([0.4416], grad_fn=<ViewBackward0>)
d03adb87-258f-47e4-a76f-2e040cea7296: tensor([0.0038], grad_fn=<ViewBackward0>)
1fba3957-a941-4d39-8a47-0a05545508b7: tensor([0.8646], grad_fn=<ViewBackward0>)
}
Note that above the parameters keys have changed as they now address the keys on the Braket device. A more readable embedding is provided by the PyQTorch backend:
from qadence import BackendName, DiffMode
pyq_backend = backend_factory(backend=BackendName.PYQTORCH, diff_mode=DiffMode.AD)
# the `Converted` object
# (contains a `ConvertedCircuit` wiht the original and native representation)
pyq_conv = pyq_backend.convert(circuit)
embedded = pyq_conv.embedding_fn(pyq_conv.params, inputs)
embedded = {
theta_6: tensor([0.4416], grad_fn=<ViewBackward0>)
theta_4: tensor([0.0464], grad_fn=<ViewBackward0>)
theta_5: tensor([0.4747], grad_fn=<ViewBackward0>)
theta_0: tensor([0.5831], grad_fn=<ViewBackward0>)
theta_8: tensor([0.8646], grad_fn=<ViewBackward0>)
theta_1: tensor([0.0745], grad_fn=<ViewBackward0>)
theta_3: tensor([0.2245], grad_fn=<ViewBackward0>)
theta_2: tensor([0.5752], grad_fn=<ViewBackward0>)
y: tensor([2., 2.])
theta_7: tensor([0.0038], grad_fn=<ViewBackward0>)
3*x: tensor([3., 3.], grad_fn=<ViewBackward0>)
orig_param_values: {'x': tensor([1., 1.]), 'y': tensor([2., 2.])}
}
With the embedded parameters, QuantumModel
methods are accessible:
embedded = conv.embedding_fn(conv.params, inputs)
samples = backend.run(conv.circuit, embedded)
print(f"{samples = }")
Lower-level: the Backend
representation
If there is a requirement to work with a specific backend, it is possible to access directly the native circuit. For example, Braket noise features can be imported which are not exposed directly by Qadence.
from braket.circuits import Noise
# Get the native Braket circuit with the given parameters
inputs = {"x": torch.rand(1), "y":torch.rand(1)}
embedded = conv.embedding_fn(conv.params, inputs)
native = backend.assign_parameters(conv.circuit, embedded)
# Define a noise channel
noise = Noise.Depolarizing(probability=0.1)
# Add noise to every gate in the circuit
native.apply_gate_noise(noise)
In order to run this noisy circuit, the density matrix simulator is needed in Braket:
from braket.devices import LocalSimulator
device = LocalSimulator("braket_dm")
result = device.run(native, shots=1000).result().measurement_counts
print(result)
T : | 0 | 1 | 2 | 3 | 4 |5|6|
q0 : -Rx(86bec2fe-63b9-49d2-ba4c-3cb560014067)-C----------------------------------------Rx(0e263f47-7fa4-453f-bf5d-7819a234c226)-Ry(ccda8914-8b3f-4d9d-8bd3-a8d46729f254)-Rx(8338a4ee-c44b-4759-85c1-cbd30205f41e)-C---
| |
q1 : -Rz(483d1388-b3f2-4151-9890-a5b6be014fc2)-X----------------------------------------Rx(315ca431-5f4d-4a74-ae62-e7a71af50d82)-Ry(76e02756-169c-41ae-b1a6-3521d3eda9ce)-Rx(d03adb87-258f-47e4-a76f-2e040cea7296)-X-C-
|
q2 : -Rx(5eb4be10-484d-49ca-a989-64ac009b4fe0)-Ry(1134c8bb-908f-460e-8092-13105b7c6167)-Rx(1fba3957-a941-4d39-8a47-0a05545508b7)-------------------------------------------------------------------------------------X-
T : | 0 | 1 | 2 | 3 | 4 |5|6|
Unassigned parameters: [0e263f47-7fa4-453f-bf5d-7819a234c226, 1134c8bb-908f-460e-8092-13105b7c6167, 1fba3957-a941-4d39-8a47-0a05545508b7, 315ca431-5f4d-4a74-ae62-e7a71af50d82, 483d1388-b3f2-4151-9890-a5b6be014fc2, 5eb4be10-484d-49ca-a989-64ac009b4fe0, 76e02756-169c-41ae-b1a6-3521d3eda9ce, 8338a4ee-c44b-4759-85c1-cbd30205f41e, 86bec2fe-63b9-49d2-ba4c-3cb560014067, ccda8914-8b3f-4d9d-8bd3-a8d46729f254, d03adb87-258f-47e4-a76f-2e040cea7296].
T : | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
q0 : -Rx(1.09)-DEPO(0.1)-C--------DEPO(0.1)-Rx(0.58)-DEPO(0.1)-Ry(0.22)-DEPO(0.1)-Rx(0.44)-DEPO(0.1)-C-DEPO(0.1)-------------
| |
q1 : -Rz(0.87)-DEPO(0.1)-X--------DEPO(0.1)-Rx(0.07)-DEPO(0.1)-Ry(0.05)-DEPO(0.1)-Rx(0.00)-DEPO(0.1)-X-DEPO(0.1)-C-DEPO(0.1)-
|
q2 : -Rx(0.58)-DEPO(0.1)-Ry(0.47)-DEPO(0.1)-Rx(0.86)-DEPO(0.1)---------------------------------------------------X-DEPO(0.1)-
T : | 0 | 1 | 2 | 3 | 4 | 5 | 6 |