Skip to content

Fitting a function with a Hamiltonian ansatz

In the analog QCL tutorial we used analog blocks to learn a function of interest. The analog blocks are a direct abstraction of device execution with global addressing. However, we may want to directly program an Hamiltonian-level ansatz to have a finer control on our model. In Qadence this can easily be done through digital-analog programs. In this tutorial we will solve a simple QCL problem with this approach.

Setting up the problem

The example problem considered is to fit a function of interest in a specified range. Below we define and plot the function \(f(x)=x^5\).

import torch
import matplotlib.pyplot as plt

# Function to fit:
def f(x):
    return x**5

xmin = -1.0
xmax = 1.0
n_test = 100

x_test = torch.linspace(xmin, xmax, steps = n_test)
y_test = f(x_test)

plt.plot(x_test, y_test)
plt.xlim((-1.1, 1.1))
plt.ylim((-1.1, 1.1))
2024-07-12T10:06:53.103030 image/svg+xml Matplotlib v3.7.5, https://matplotlib.org/

Digital-Analog Ansatz

We start by defining the register of qubits. The topology we use now will define the interactions in the entangling Hamiltonian. As an example, we can define a rectangular lattice with 6 qubits.

from qadence import Register

reg = Register.rectangular_lattice(
    qubits_row = 3,
    qubits_col = 2,
)

Inspired by the Ising interaction mode of Rydberg atoms, we can now define an interaction Hamiltonian as \(\mathcal{H}_{ij}=\frac{1}{r_{ij}^6}N_iN_j\), where \(N_i=(1/2)(I_i-Z_i)\) is the number operator and and \(r_{ij}\) is the distance between qubits \(i\) and \(j\). We can easily instatiate this interaction Hamiltonian from the register information:

from qadence import N, add

def h_ij(i: int, j: int):
    return N(i)@N(j)

h_int = add(h_ij(*edge)/r**6 for edge, r in reg.edge_distances.items())

To build the digital-analog ansatz we can make use of the standard hea function by specifying we want to use the Strategy.SDAQC and passing the Hamiltonian we created as the entangler, as see in the QML constructors tutorial. The entangling operation will be replaced by the evolution of this Hamiltonian HamEvo(h_int, t), where the time parameter t is considered to be a variational parameter at each layer.

from qadence import hea, Strategy, RX, RY

depth = 2

da_ansatz = hea(
    n_qubits = reg.n_qubits,
    depth = depth,
    operations = [RX, RY, RX],
    entangler = h_int,
    strategy = Strategy.SDAQC,
)

print(html_string(da_ansatz))
%3 cluster_e2f408ef23eb4e82b1c9ccb470fce5df cluster_07fa0d2496394171bd246c89ec1da56f 37262a2348df4151a2bc096bfcfa53f3 0 26c7989b649e4f63bc31ea217c2b6174 RX(theta₀) 37262a2348df4151a2bc096bfcfa53f3--26c7989b649e4f63bc31ea217c2b6174 6816b07681264ffebb715ba61273c5b1 1 4c5f25fd4fde47fba94013d96b5ba34e RY(theta₆) 26c7989b649e4f63bc31ea217c2b6174--4c5f25fd4fde47fba94013d96b5ba34e 2f430cf16d1c44efb595ddd247525707 RX(theta₁₂) 4c5f25fd4fde47fba94013d96b5ba34e--2f430cf16d1c44efb595ddd247525707 df39e7cb56e44a0aa599d4addccda58a 2f430cf16d1c44efb595ddd247525707--df39e7cb56e44a0aa599d4addccda58a 8ede012a19584ad3865adda8f03b9de8 RX(theta₁₈) df39e7cb56e44a0aa599d4addccda58a--8ede012a19584ad3865adda8f03b9de8 2fb7738ed78a4107a4620e4d05714d3a RY(theta₂₄) 8ede012a19584ad3865adda8f03b9de8--2fb7738ed78a4107a4620e4d05714d3a e0f573f84d094f4e9505cc207c1dda18 RX(theta₃₀) 2fb7738ed78a4107a4620e4d05714d3a--e0f573f84d094f4e9505cc207c1dda18 1f977ee48c924fa7ad2dab65d2a36c62 e0f573f84d094f4e9505cc207c1dda18--1f977ee48c924fa7ad2dab65d2a36c62 10526797de4346deb7a7a7a5bef78795 1f977ee48c924fa7ad2dab65d2a36c62--10526797de4346deb7a7a7a5bef78795 a617a722253342afb86508e7732eab5b 38b32059f0664f8a9e0fb081ad20a416 RX(theta₁) 6816b07681264ffebb715ba61273c5b1--38b32059f0664f8a9e0fb081ad20a416 47746df8fedf4b8faea85a313f96c36d 2 f804c74671dc4283b848111c6055ccb6 RY(theta₇) 38b32059f0664f8a9e0fb081ad20a416--f804c74671dc4283b848111c6055ccb6 a04570d2127f49129b239bd7ae6b1a42 RX(theta₁₃) f804c74671dc4283b848111c6055ccb6--a04570d2127f49129b239bd7ae6b1a42 614723577cde450d873b684e68433e5b a04570d2127f49129b239bd7ae6b1a42--614723577cde450d873b684e68433e5b 804d2ed8a1924ffe86862144388f8306 RX(theta₁₉) 614723577cde450d873b684e68433e5b--804d2ed8a1924ffe86862144388f8306 2cfcb179f16445958430ace77f50bbbd RY(theta₂₅) 804d2ed8a1924ffe86862144388f8306--2cfcb179f16445958430ace77f50bbbd 1aa71a9105ef4229951b9b7336bff482 RX(theta₃₁) 2cfcb179f16445958430ace77f50bbbd--1aa71a9105ef4229951b9b7336bff482 cea2b6d74b9843989a9fbde1572fea87 1aa71a9105ef4229951b9b7336bff482--cea2b6d74b9843989a9fbde1572fea87 cea2b6d74b9843989a9fbde1572fea87--a617a722253342afb86508e7732eab5b c687d01639c14805a7358f8f74b6078b efb9b692a38545238cc0f89e10144b29 RX(theta₂) 47746df8fedf4b8faea85a313f96c36d--efb9b692a38545238cc0f89e10144b29 f51d4911c5b04a6bac0028e39bb851f7 3 1609445772364f78b1eb880ae1fb65b8 RY(theta₈) efb9b692a38545238cc0f89e10144b29--1609445772364f78b1eb880ae1fb65b8 b758e7e43eed419fb01763432b3695e2 RX(theta₁₄) 1609445772364f78b1eb880ae1fb65b8--b758e7e43eed419fb01763432b3695e2 1af34f00b7e44604918abc9aec41a951 HamEvo b758e7e43eed419fb01763432b3695e2--1af34f00b7e44604918abc9aec41a951 4525d1fed826451db6dbccbaa65db8a9 RX(theta₂₀) 1af34f00b7e44604918abc9aec41a951--4525d1fed826451db6dbccbaa65db8a9 916655ccedea42639283ed7afffe1589 RY(theta₂₆) 4525d1fed826451db6dbccbaa65db8a9--916655ccedea42639283ed7afffe1589 73560748ef264ce38436d9985a3f7f7d RX(theta₃₂) 916655ccedea42639283ed7afffe1589--73560748ef264ce38436d9985a3f7f7d bbf44d354ffa49a1b3faeca59ba7b7db HamEvo 73560748ef264ce38436d9985a3f7f7d--bbf44d354ffa49a1b3faeca59ba7b7db bbf44d354ffa49a1b3faeca59ba7b7db--c687d01639c14805a7358f8f74b6078b b108278e9c8747ff8de020c47ab4834e 799f4a16d37e45d4939e08c9a486c2e3 RX(theta₃) f51d4911c5b04a6bac0028e39bb851f7--799f4a16d37e45d4939e08c9a486c2e3 1b6af807efef40b39b81166cbe939aab 4 cda1b208c2a449e08235a0de16ccef11 RY(theta₉) 799f4a16d37e45d4939e08c9a486c2e3--cda1b208c2a449e08235a0de16ccef11 846d041acf8d4d22b33d2b2b25ab5879 RX(theta₁₅) cda1b208c2a449e08235a0de16ccef11--846d041acf8d4d22b33d2b2b25ab5879 f4c790b8a5c24d94aa9929d750d7168e t = theta_t₀ 846d041acf8d4d22b33d2b2b25ab5879--f4c790b8a5c24d94aa9929d750d7168e d37112954b6b489c980b1501099361d4 RX(theta₂₁) f4c790b8a5c24d94aa9929d750d7168e--d37112954b6b489c980b1501099361d4 9108647a854f4b2f8ef488d73906e732 RY(theta₂₇) d37112954b6b489c980b1501099361d4--9108647a854f4b2f8ef488d73906e732 26b88ef615c648b893c3083f8288f61d RX(theta₃₃) 9108647a854f4b2f8ef488d73906e732--26b88ef615c648b893c3083f8288f61d 411e43e2cf714d2ba0f5cf608722f86f t = theta_t₁ 26b88ef615c648b893c3083f8288f61d--411e43e2cf714d2ba0f5cf608722f86f 411e43e2cf714d2ba0f5cf608722f86f--b108278e9c8747ff8de020c47ab4834e 2e85d84e88b94150b14477bb4afbff3b e7ca558eb08b4dfb84be132fb2ef86f4 RX(theta₄) 1b6af807efef40b39b81166cbe939aab--e7ca558eb08b4dfb84be132fb2ef86f4 bc8f1ba7a5194d08a30ada02015926d4 5 17a464d65fd144949c60191f97816631 RY(theta₁₀) e7ca558eb08b4dfb84be132fb2ef86f4--17a464d65fd144949c60191f97816631 06078cbcd1184d16b7d6dbd50711f1f8 RX(theta₁₆) 17a464d65fd144949c60191f97816631--06078cbcd1184d16b7d6dbd50711f1f8 65f25801fd2048d2a28f9dca46967cdf 06078cbcd1184d16b7d6dbd50711f1f8--65f25801fd2048d2a28f9dca46967cdf b11a616f39c048dd909d29bc296a7128 RX(theta₂₂) 65f25801fd2048d2a28f9dca46967cdf--b11a616f39c048dd909d29bc296a7128 cc6b12b27a8e4038a06105837b435e76 RY(theta₂₈) b11a616f39c048dd909d29bc296a7128--cc6b12b27a8e4038a06105837b435e76 cbd099f5fb8b4dd9bb5c5065a3f66d3f RX(theta₃₄) cc6b12b27a8e4038a06105837b435e76--cbd099f5fb8b4dd9bb5c5065a3f66d3f 45a27e8653754c1494ae40c1c382c619 cbd099f5fb8b4dd9bb5c5065a3f66d3f--45a27e8653754c1494ae40c1c382c619 45a27e8653754c1494ae40c1c382c619--2e85d84e88b94150b14477bb4afbff3b 253d7abe6b1c498591f3b13d9dd6fb01 20c664e2d0e544d693bfbe51b0182396 RX(theta₅) bc8f1ba7a5194d08a30ada02015926d4--20c664e2d0e544d693bfbe51b0182396 77a2208e7a0048a9ba7926f6806fdaa2 RY(theta₁₁) 20c664e2d0e544d693bfbe51b0182396--77a2208e7a0048a9ba7926f6806fdaa2 1bde9386bf52444f847d4fadb1b4e4b1 RX(theta₁₇) 77a2208e7a0048a9ba7926f6806fdaa2--1bde9386bf52444f847d4fadb1b4e4b1 74ddde4c01fb4972abf40473c074b953 1bde9386bf52444f847d4fadb1b4e4b1--74ddde4c01fb4972abf40473c074b953 d138b20f6ec148559f38f5b24294ed4b RX(theta₂₃) 74ddde4c01fb4972abf40473c074b953--d138b20f6ec148559f38f5b24294ed4b dacabb64df3f4fa2a3399f2485cc2bb8 RY(theta₂₉) d138b20f6ec148559f38f5b24294ed4b--dacabb64df3f4fa2a3399f2485cc2bb8 a7ce4799d7ec4c21a44bfa27f33f9bf4 RX(theta₃₅) dacabb64df3f4fa2a3399f2485cc2bb8--a7ce4799d7ec4c21a44bfa27f33f9bf4 5f2fefc5f2af48d2856748c9de32bac8 a7ce4799d7ec4c21a44bfa27f33f9bf4--5f2fefc5f2af48d2856748c9de32bac8 5f2fefc5f2af48d2856748c9de32bac8--253d7abe6b1c498591f3b13d9dd6fb01

Creating the QuantumModel

The rest of the procedure is the same as any other Qadence workflow. We start by defining a feature map for input encoding and an observable for output decoding.

from qadence import feature_map, BasisSet, ReuploadScaling
from qadence import Z, I

fm = feature_map(
    n_qubits = reg.n_qubits,
    param = "x",
    fm_type = BasisSet.CHEBYSHEV,
    reupload_scaling = ReuploadScaling.TOWER,
)

# Total magnetization
observable = add(Z(i) for i in range(reg.n_qubits))

And we have all the ingredients to initialize the QuantumModel:

from qadence import QuantumCircuit, QuantumModel

circuit = QuantumCircuit(reg, fm, da_ansatz)

model = QuantumModel(circuit, observable = observable)

Training the model

We can now train the model. We use a set of 20 equally spaced training points.

# Chebyshev FM does not accept x = -1, 1
xmin = -0.99
xmax = 0.99
n_train = 20

x_train = torch.linspace(xmin, xmax, steps = n_train)
y_train = f(x_train)

# Initial model prediction
y_pred_initial = model.expectation({"x": x_test}).detach()

And we use a simple custom training loop.

criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr = 0.1)

n_epochs = 200

def loss_fn(x_train, y_train):
    out = model.expectation({"x": x_train})
    loss = criterion(out.squeeze(), y_train)
    return loss

for i in range(n_epochs):
    optimizer.zero_grad()
    loss = loss_fn(x_train, y_train)
    loss.backward()
    optimizer.step()

Results

Finally we can plot the resulting trained model.

y_pred_final = model.expectation({"x": x_test}).detach()

plt.plot(x_test, y_pred_initial, label = "Initial prediction")
plt.plot(x_test, y_pred_final, label = "Final prediction")
plt.scatter(x_train, y_train, label = "Training points")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.legend()
plt.xlim((-1.1, 1.1))
plt.ylim((-1.1, 1.1))
2024-07-12T10:06:58.639052 image/svg+xml Matplotlib v3.7.5, https://matplotlib.org/