PyQTorch
Fast differentiable statevector emulator based on PyTorch. The code is open source, hosted on Github and maintained by Pasqal.
Backend(name=BackendName.PYQTORCH, supports_ad=True, support_bp=True, supports_adjoint=True, is_remote=False, with_measurements=True, native_endianness=Endianness.BIG, engine=Engine.TORCH, with_noise=False, config=Configuration())
dataclass
Bases: Backend
PyQTorch backend.
convert(circuit, observable=None)
Convert an abstract circuit and an optional observable to their native representation.
Additionally, this function constructs an embedding function which maps from user-facing parameters to device parameters (read more on parameter embedding here).
Source code in qadence/backend.py
Configuration(_use_gate_params=True, use_sparse_observable=False, use_gradient_checkpointing=False, use_single_qubit_composition=False, transpilation_passes=None, algo_hevo=AlgoHEvo.EXP, ode_solver=SolverType.DP5_SE, n_steps_hevo=100, loop_expectation=False)
dataclass
Bases: BackendConfiguration
algo_hevo: AlgoHEvo = AlgoHEvo.EXP
class-attribute
instance-attribute
Determine which kind of Hamiltonian evolution algorithm to use.
loop_expectation: bool = False
class-attribute
instance-attribute
When computing batches of expectation values, only allocate one wavefunction.
Loop over the batch of parameters to only allocate a single wavefunction at any given time.
n_steps_hevo: int = 100
class-attribute
instance-attribute
Default number of steps for the Hamiltonian evolution.
ode_solver: SolverType = SolverType.DP5_SE
class-attribute
instance-attribute
Determine which ODE solver to use for time-dependent blocks.
use_gradient_checkpointing: bool = False
class-attribute
instance-attribute
Use gradient checkpointing.
Recommended for higher-order optimization tasks.
use_single_qubit_composition: bool = False
class-attribute
instance-attribute
Composes chains of single qubit gates into a single matmul if possible.
supported_gates = list(set(OpName.list()) - set([OpName.TDAGGER]))
module-attribute
The set of supported gates.
Tdagger is currently not supported.
PyQHamiltonianEvolution(qubit_support, n_qubits, block, config)
Bases: Module
Source code in qadence/backends/pyqtorch/convert_ops.py
dagger(values)
jacobian_generator(values)
Approximate jacobian of the evolved operator with respect to generator parameter(s).
Source code in qadence/backends/pyqtorch/convert_ops.py
jacobian_time(values)
Approximate jacobian of the evolved operator with respect to time evolution.
Source code in qadence/backends/pyqtorch/convert_ops.py
unitary(values)
The evolved operator given current parameter values for generator and time evolution.