Backends
Backends allow execution of Qadence abstract quantum circuits. They could be chosen from a variety of simulators, emulators and hardware
and can enable circuit differentiability. The primary way to interact and configure
a backend is via the high-level API QuantumModel
.
Not all backends are equivalent
Not all backends support the same set of operations, especially while executing analog blocks. Qadence will throw descriptive errors in such cases.
Execution backends
PyQTorch: An efficient, large-scale simulator designed for
quantum machine learning, seamlessly integrated with the popular PyTorch deep learning framework for automatic differentiability.
It also offers analog computing for time-independent pulses. See PyQTorchBackend
.
Pulser: A Python library for pulse-level/analog control of
neutral atom devices. Execution via QuTiP. See PulserBackend
.
More: Proprietary Qadence extensions provide more high-performance backends based on tensor networks or differentiation engines.
For more enquiries, please contact: info@pasqal.com
.
Differentiation backend
The DifferentiableBackend
class enables different differentiation modes
for the given backend. This can be chosen from two types:
- Automatic differentiation (AD): available for PyTorch based backends (PyQTorch).
- Parameter Shift Rules (PSR): available for all backends. See this section for more information on differentiability and PSR.
In practice, only a diff_mode
should be provided in the QuantumModel
. Please note that diff_mode
defaults to None
:
import sympy
import torch
from qadence import Parameter, RX, RZ, Z, CNOT, QuantumCircuit, QuantumModel, chain, BackendName, DiffMode
x = Parameter("x", trainable=False)
y = Parameter("y", trainable=False)
fm = chain(
RX(0, 3 * x),
RX(0, x),
RZ(1, sympy.exp(y)),
RX(0, 3.14),
RZ(1, "theta")
)
ansatz = CNOT(0, 1)
block = chain(fm, ansatz)
circuit = QuantumCircuit(2, block)
observable = Z(0)
# DiffMode.GPSR is available for any backend.
# DiffMode.AD is only available for natively differentiable backends.
model = QuantumModel(circuit, observable, backend=BackendName.PYQTORCH, diff_mode=DiffMode.GPSR)
# Get some values for the feature parameters.
values = {"x": (x := torch.tensor([0.5], requires_grad=True)), "y": torch.tensor([0.1])}
# Compute expectation.
exp = model.expectation(values)
# Differentiate the expectation wrt x.
dexp_dx = torch.autograd.grad(exp, x, torch.ones_like(exp))
Low-level backend_factory
interface
Every backend in Qadence inherits from the abstract Backend
class:
Backend
and implement the following methods:
run
: propagate the initial state according to the quantum circuit and return the final wavefunction object.sample
: sample from a circuit.expectation
: computes the expectation of a circuit given an observable.convert
: convert the abstractQuantumCircuit
object to its backend-native representation including a backend specific parameter embedding function.
Backends are purely functional objects which take as input the values for the circuit parameters and return the desired output from a call to a method. In order to use a backend directly, embedded parameters must be supplied as they are returned by the backend specific embedding function.
Here is a simple demonstration of the use of the Braket backend to execute a circuit in non-differentiable mode:
from qadence import QuantumCircuit, FeatureParameter, RX, RZ, CNOT, hea, chain
# Construct a feature map.
x = FeatureParameter("x")
z = FeatureParameter("y")
fm = chain(RX(0, 3 * x), RZ(1, z), CNOT(0, 1))
# Construct a circuit with an hardware-efficient ansatz.
circuit = QuantumCircuit(3, fm, hea(3,1))
The abstract QuantumCircuit
can now be converted to its native representation via the Braket
backend.
from qadence import backend_factory
# Use only Braket in non-differentiable mode:
backend = backend_factory("braket")
# The `Converted` object
# (contains a `ConvertedCircuit` with the original and native representation)
conv = backend.convert(circuit)
conv.circuit.original = ChainBlock(0,1,2)
├── ChainBlock(0,1)
│ ├── RX(0) [params: ['3*x']]
│ ├── RZ(1) [params: ['y']]
│ └── CNOT(0, 1)
└── ChainBlock(0,1,2) [tag: HEA]
├── ChainBlock(0,1,2)
│ ├── KronBlock(0,1,2)
│ │ ├── RX(0) [params: ['theta_0']]
│ │ ├── RX(1) [params: ['theta_1']]
│ │ └── RX(2) [params: ['theta_2']]
│ ├── KronBlock(0,1,2)
│ │ ├── RY(0) [params: ['theta_3']]
│ │ ├── RY(1) [params: ['theta_4']]
│ │ └── RY(2) [params: ['theta_5']]
│ └── KronBlock(0,1,2)
│ ├── RX(0) [params: ['theta_6']]
│ ├── RX(1) [params: ['theta_7']]
│ └── RX(2) [params: ['theta_8']]
└── ChainBlock(0,1,2)
├── KronBlock(0,1)
│ └── CNOT(0, 1)
└── KronBlock(1,2)
└── CNOT(1, 2)
conv.circuit.native = Circuit('instructions': [Instruction('operator': Rx('angle': 74bccc23-dc5e-4b1c-8dc0-be9bb9c96fa9, 'qubit_count': 1), 'target': QubitSet([Qubit(0)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rz('angle': 69b5c438-3989-44a7-ae4c-7966bd831fe9, 'qubit_count': 1), 'target': QubitSet([Qubit(1)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0), Qubit(1)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rx('angle': a8099928-f62d-42ea-8aef-716687fd566d, 'qubit_count': 1), 'target': QubitSet([Qubit(0)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rx('angle': 0049b169-1019-45ca-b924-ceaf2e032b50, 'qubit_count': 1), 'target': QubitSet([Qubit(1)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rx('angle': 77b3ec9a-6a82-4683-8b06-4072cc6d34ad, 'qubit_count': 1), 'target': QubitSet([Qubit(2)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Ry('angle': b0b64cfd-e7f0-46d3-9b6a-03fb638ceca7, 'qubit_count': 1), 'target': QubitSet([Qubit(0)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Ry('angle': 67f6189d-6d2f-41da-b2b6-557156e1deee, 'qubit_count': 1), 'target': QubitSet([Qubit(1)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Ry('angle': b1f8563a-df70-4e27-a436-93c4d977147e, 'qubit_count': 1), 'target': QubitSet([Qubit(2)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rx('angle': 06bd83e6-70b0-46f6-bf84-fa931ad436c1, 'qubit_count': 1), 'target': QubitSet([Qubit(0)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rx('angle': 4e1c663d-67dd-423c-9d07-22fcf4d125fd, 'qubit_count': 1), 'target': QubitSet([Qubit(1)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': Rx('angle': 319e4698-b37e-4005-a052-d1d3a03ce6d7, 'qubit_count': 1), 'target': QubitSet([Qubit(2)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(0), Qubit(1)]), 'control': QubitSet([]), 'control_state': (), 'power': 1), Instruction('operator': CNot('qubit_count': 2), 'target': QubitSet([Qubit(1), Qubit(2)]), 'control': QubitSet([]), 'control_state': (), 'power': 1)])
Additionally, Converted
contains all fixed and variational parameters, as well as an embedding
function which accepts feature parameters to construct a dictionary of circuit native parameters.
These are needed as each backend uses a different representation of the circuit parameters:
import torch
# Contains fixed parameters and variational (from the HEA)
conv.params
inputs = {"x": torch.tensor([1., 1.]), "y":torch.tensor([2., 2.])}
# get all circuit parameters (including feature params)
embedded = conv.embedding_fn(conv.params, inputs)
conv.params = {
theta_1: tensor([0.9870], requires_grad=True)
theta_3: tensor([0.6987], requires_grad=True)
theta_0: tensor([0.7831], requires_grad=True)
theta_2: tensor([0.3415], requires_grad=True)
theta_5: tensor([0.5376], requires_grad=True)
theta_4: tensor([0.0173], requires_grad=True)
theta_7: tensor([0.3505], requires_grad=True)
theta_6: tensor([0.9344], requires_grad=True)
theta_8: tensor([0.9638], requires_grad=True)
}
embedded = {
74bccc23-dc5e-4b1c-8dc0-be9bb9c96fa9: tensor([3., 3.], grad_fn=<ViewBackward0>)
69b5c438-3989-44a7-ae4c-7966bd831fe9: tensor([2., 2.])
a8099928-f62d-42ea-8aef-716687fd566d: tensor([0.7831], grad_fn=<ViewBackward0>)
0049b169-1019-45ca-b924-ceaf2e032b50: tensor([0.9870], grad_fn=<ViewBackward0>)
77b3ec9a-6a82-4683-8b06-4072cc6d34ad: tensor([0.3415], grad_fn=<ViewBackward0>)
b0b64cfd-e7f0-46d3-9b6a-03fb638ceca7: tensor([0.6987], grad_fn=<ViewBackward0>)
67f6189d-6d2f-41da-b2b6-557156e1deee: tensor([0.0173], grad_fn=<ViewBackward0>)
b1f8563a-df70-4e27-a436-93c4d977147e: tensor([0.5376], grad_fn=<ViewBackward0>)
06bd83e6-70b0-46f6-bf84-fa931ad436c1: tensor([0.9344], grad_fn=<ViewBackward0>)
4e1c663d-67dd-423c-9d07-22fcf4d125fd: tensor([0.3505], grad_fn=<ViewBackward0>)
319e4698-b37e-4005-a052-d1d3a03ce6d7: tensor([0.9638], grad_fn=<ViewBackward0>)
}
Note that above the parameters keys have changed as they now address the keys on the Braket device. A more readable embedding is provided by the PyQTorch backend:
from qadence import BackendName, DiffMode
pyq_backend = backend_factory(backend=BackendName.PYQTORCH, diff_mode=DiffMode.AD)
# the `Converted` object
# (contains a `ConvertedCircuit` wiht the original and native representation)
pyq_conv = pyq_backend.convert(circuit)
embedded = pyq_conv.embedding_fn(pyq_conv.params, inputs)
embedded = {
theta_1: tensor([0.9870], grad_fn=<ViewBackward0>)
theta_3: tensor([0.6987], grad_fn=<ViewBackward0>)
theta_0: tensor([0.7831], grad_fn=<ViewBackward0>)
theta_2: tensor([0.3415], grad_fn=<ViewBackward0>)
theta_5: tensor([0.5376], grad_fn=<ViewBackward0>)
3*x: tensor([3., 3.], grad_fn=<ViewBackward0>)
y: tensor([2., 2.])
theta_4: tensor([0.0173], grad_fn=<ViewBackward0>)
theta_7: tensor([0.3505], grad_fn=<ViewBackward0>)
theta_6: tensor([0.9344], grad_fn=<ViewBackward0>)
theta_8: tensor([0.9638], grad_fn=<ViewBackward0>)
orig_param_values: {'x': tensor([1., 1.]), 'y': tensor([2., 2.])}
}
With the embedded parameters, QuantumModel
methods are accessible:
embedded = conv.embedding_fn(conv.params, inputs)
samples = backend.run(conv.circuit, embedded)
print(f"{samples = }")
Lower-level: the Backend
representation
If there is a requirement to work with a specific backend, it is possible to access directly the native circuit. For example, Braket noise features can be imported which are not exposed directly by Qadence.
from braket.circuits import Noise
# Get the native Braket circuit with the given parameters
inputs = {"x": torch.rand(1), "y":torch.rand(1)}
embedded = conv.embedding_fn(conv.params, inputs)
native = backend.assign_parameters(conv.circuit, embedded)
# Define a noise channel
noise = Noise.Depolarizing(probability=0.1)
# Add noise to every gate in the circuit
native.apply_gate_noise(noise)
In order to run this noisy circuit, the density matrix simulator is needed in Braket:
from braket.devices import LocalSimulator
device = LocalSimulator("braket_dm")
result = device.run(native, shots=1000).result().measurement_counts
print(result)
T : | 0 | 1 | 2 | 3 | 4 |5|6|
q0 : -Rx(74bccc23-dc5e-4b1c-8dc0-be9bb9c96fa9)-C----------------------------------------Rx(a8099928-f62d-42ea-8aef-716687fd566d)-Ry(b0b64cfd-e7f0-46d3-9b6a-03fb638ceca7)-Rx(06bd83e6-70b0-46f6-bf84-fa931ad436c1)-C---
| |
q1 : -Rz(69b5c438-3989-44a7-ae4c-7966bd831fe9)-X----------------------------------------Rx(0049b169-1019-45ca-b924-ceaf2e032b50)-Ry(67f6189d-6d2f-41da-b2b6-557156e1deee)-Rx(4e1c663d-67dd-423c-9d07-22fcf4d125fd)-X-C-
|
q2 : -Rx(77b3ec9a-6a82-4683-8b06-4072cc6d34ad)-Ry(b1f8563a-df70-4e27-a436-93c4d977147e)-Rx(319e4698-b37e-4005-a052-d1d3a03ce6d7)-------------------------------------------------------------------------------------X-
T : | 0 | 1 | 2 | 3 | 4 |5|6|
Unassigned parameters: [0049b169-1019-45ca-b924-ceaf2e032b50, 06bd83e6-70b0-46f6-bf84-fa931ad436c1, 319e4698-b37e-4005-a052-d1d3a03ce6d7, 4e1c663d-67dd-423c-9d07-22fcf4d125fd, 67f6189d-6d2f-41da-b2b6-557156e1deee, 69b5c438-3989-44a7-ae4c-7966bd831fe9, 74bccc23-dc5e-4b1c-8dc0-be9bb9c96fa9, 77b3ec9a-6a82-4683-8b06-4072cc6d34ad, a8099928-f62d-42ea-8aef-716687fd566d, b0b64cfd-e7f0-46d3-9b6a-03fb638ceca7, b1f8563a-df70-4e27-a436-93c4d977147e].
T : | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
q0 : -Rx(2.35)-DEPO(0.1)-C--------DEPO(0.1)-Rx(0.78)-DEPO(0.1)-Ry(0.70)-DEPO(0.1)-Rx(0.93)-DEPO(0.1)-C-DEPO(0.1)-------------
| |
q1 : -Rz(0.03)-DEPO(0.1)-X--------DEPO(0.1)-Rx(0.99)-DEPO(0.1)-Ry(0.02)-DEPO(0.1)-Rx(0.35)-DEPO(0.1)-X-DEPO(0.1)-C-DEPO(0.1)-
|
q2 : -Rx(0.34)-DEPO(0.1)-Ry(0.54)-DEPO(0.1)-Rx(0.96)-DEPO(0.1)---------------------------------------------------X-DEPO(0.1)-
T : | 0 | 1 | 2 | 3 | 4 | 5 | 6 |