Backends
Backends allow execution of Qadence abstract quantum circuits. They could be chosen from a variety of simulators, emulators and hardware
and can enable circuit differentiability. The primary way to interact and configure
a backend is via the high-level API QuantumModel
.
Not all backends are equivalent
Not all backends support the same set of operations, especially while executing analog blocks. Qadence will throw descriptive errors in such cases.
Execution backends
PyQTorch: An efficient, large-scale simulator designed for
quantum machine learning, seamlessly integrated with the popular PyTorch deep learning framework for automatic differentiability.
It also offers analog computing for time-(in)dependent pulses. See PyQTorchBackend
.
Pulser: A Python library for pulse-level/analog control of
neutral atom devices. Execution via QuTiP. See PulserBackend
.
More: Proprietary Qadence extensions provide more high-performance backends based on tensor networks or differentiation engines.
For more enquiries, please contact: info@pasqal.com
.
Differentiation backend
The DifferentiableBackend
class enables different differentiation modes
for the given backend. This can be chosen from two types:
- Automatic differentiation (AD): available for PyTorch based backends (PyQTorch).
- Parameter Shift Rules (PSR): available for all backends. See this section for more information on differentiability and PSR.
In practice, only a diff_mode
should be provided in the QuantumModel
. Please note that diff_mode
defaults to None
:
import sympy
import torch
from qadence import Parameter, RX, RZ, Z, CNOT, QuantumCircuit, QuantumModel, chain, BackendName, DiffMode
x = Parameter("x", trainable=False)
y = Parameter("y", trainable=False)
fm = chain(
RX(0, 3 * x),
RX(0, x),
RZ(1, sympy.exp(y)),
RX(0, 3.14),
RZ(1, "theta")
)
ansatz = CNOT(0, 1)
block = chain(fm, ansatz)
circuit = QuantumCircuit(2, block)
observable = Z(0)
# DiffMode.GPSR is available for any backend.
# DiffMode.AD is only available for natively differentiable backends.
model = QuantumModel(circuit, observable, backend=BackendName.PYQTORCH, diff_mode=DiffMode.GPSR)
# Get some values for the feature parameters.
values = {"x": (x := torch.tensor([0.5], requires_grad=True)), "y": torch.tensor([0.1])}
# Compute expectation.
exp = model.expectation(values)
# Differentiate the expectation wrt x.
dexp_dx = torch.autograd.grad(exp, x, torch.ones_like(exp))
Low-level backend_factory
interface
Every backend in Qadence inherits from the abstract Backend
class:
Backend
and implement the following methods:
run
: propagate the initial state according to the quantum circuit and return the final wavefunction object.sample
: sample from a circuit.expectation
: computes the expectation of a circuit given an observable.convert
: convert the abstractQuantumCircuit
object to its backend-native representation including a backend specific parameter embedding function.
Backends are purely functional objects which take as input the values for the circuit parameters and return the desired output from a call to a method. In order to use a backend directly, embedded parameters must be supplied as they are returned by the backend specific embedding function.
Here is a simple demonstration of the use of the PyQTorch backend to execute a circuit in non-differentiable mode:
from qadence import QuantumCircuit, FeatureParameter, RX, RZ, CNOT, hea, chain
# Construct a feature map.
x = FeatureParameter("x")
z = FeatureParameter("y")
fm = chain(RX(0, 3 * x), RZ(1, z), CNOT(0, 1))
# Construct a circuit with an hardware-efficient ansatz.
circuit = QuantumCircuit(3, fm, hea(3,1))
The abstract QuantumCircuit
can now be converted to its native representation via the PyQTorch
backend.
from qadence import backend_factory
# Use only PyQtorch in non-differentiable mode:
backend = backend_factory("pyqtorch")
# The `Converted` object
# (contains a `ConvertedCircuit` with the original and native representation)
conv = backend.convert(circuit)
conv.circuit.original = ChainBlock(0,1,2)
├── ChainBlock(0,1)
│ ├── RX(0) [params: ['3*x']]
│ ├── RZ(1) [params: ['y']]
│ └── CNOT(0, 1)
└── ChainBlock(0,1,2) [tag: HEA]
├── ChainBlock(0,1,2)
│ ├── KronBlock(0,1,2)
│ │ ├── RX(0) [params: ['theta_0']]
│ │ ├── RX(1) [params: ['theta_1']]
│ │ └── RX(2) [params: ['theta_2']]
│ ├── KronBlock(0,1,2)
│ │ ├── RY(0) [params: ['theta_3']]
│ │ ├── RY(1) [params: ['theta_4']]
│ │ └── RY(2) [params: ['theta_5']]
│ └── KronBlock(0,1,2)
│ ├── RX(0) [params: ['theta_6']]
│ ├── RX(1) [params: ['theta_7']]
│ └── RX(2) [params: ['theta_8']]
└── ChainBlock(0,1,2)
├── KronBlock(0,1)
│ └── CNOT(0, 1)
└── KronBlock(1,2)
└── CNOT(1, 2)
conv.circuit.native = QuantumCircuit(
(operations): ModuleList(
(0): Sequence(
(operations): ModuleList(
(0): Sequence(
(operations): ModuleList(
(0): RX(target: (0,), param: da107610-dade-4069-80cb-c2703b9036a8)
(1): RZ(target: (1,), param: c6b4b395-28cd-4c4f-ae55-98d929fa8ae9)
(2): CNOT(control: (0,), target: (1,))
)
)
(1): Sequence(
(operations): ModuleList(
(0): Sequence(
(operations): ModuleList(
(0): Merge(
(operations): ModuleList(
(0): RX(target: (0,), param: 6bc3fb5f-2a01-42e0-89ea-2a904271dfbe)
(1): RY(target: (0,), param: fbf70095-09b5-45c7-8dcc-cf5a425137b2)
(2): RX(target: (0,), param: 38508018-82d5-442c-b76f-fd181cde96a2)
)
)
(1): Merge(
(operations): ModuleList(
(0): RX(target: (1,), param: 227b7ce7-5090-45e2-aae7-c58374965682)
(1): RY(target: (1,), param: 16b225e9-1f66-4c25-9cd0-0239a3b98bdb)
(2): RX(target: (1,), param: 95f5a46b-59d2-470e-954a-eb54edddb2f9)
)
)
(2): Merge(
(operations): ModuleList(
(0): RX(target: (2,), param: 864c7731-1443-4eb8-b7c8-8f742f01c44f)
(1): RY(target: (2,), param: 57f79646-b167-4531-997d-ea9cb7e80061)
(2): RX(target: (2,), param: cb117fea-7b72-4002-9405-446a04c8a15b)
)
)
)
)
(1): Sequence(
(operations): ModuleList(
(0): Sequence(
(operations): ModuleList(
(0): CNOT(control: (0,), target: (1,))
)
)
(1): Sequence(
(operations): ModuleList(
(0): CNOT(control: (1,), target: (2,))
)
)
)
)
)
)
)
)
)
)
Additionally, Converted
contains all fixed and variational parameters, as well as an embedding
function which accepts feature parameters to construct a dictionary of circuit native parameters.
These are needed as each backend uses a different representation of the circuit parameters:
import torch
# Contains fixed parameters and variational (from the HEA)
conv.params
inputs = {"x": torch.tensor([1., 1.]), "y":torch.tensor([2., 2.])}
# get all circuit parameters (including feature params)
embedded = conv.embedding_fn(conv.params, inputs)
conv.params = {
theta_4: tensor([0.4955], requires_grad=True)
theta_6: tensor([0.5495], requires_grad=True)
theta_2: tensor([0.2499], requires_grad=True)
theta_0: tensor([0.9526], requires_grad=True)
theta_3: tensor([0.1415], requires_grad=True)
theta_7: tensor([0.8372], requires_grad=True)
theta_5: tensor([0.8637], requires_grad=True)
theta_1: tensor([0.4192], requires_grad=True)
theta_8: tensor([0.2820], requires_grad=True)
}
embedded = {
da107610-dade-4069-80cb-c2703b9036a8: tensor([3., 3.], grad_fn=<ViewBackward0>)
c6b4b395-28cd-4c4f-ae55-98d929fa8ae9: tensor([2., 2.])
6bc3fb5f-2a01-42e0-89ea-2a904271dfbe: tensor([0.9526], grad_fn=<ViewBackward0>)
fbf70095-09b5-45c7-8dcc-cf5a425137b2: tensor([0.1415], grad_fn=<ViewBackward0>)
38508018-82d5-442c-b76f-fd181cde96a2: tensor([0.5495], grad_fn=<ViewBackward0>)
227b7ce7-5090-45e2-aae7-c58374965682: tensor([0.4192], grad_fn=<ViewBackward0>)
16b225e9-1f66-4c25-9cd0-0239a3b98bdb: tensor([0.4955], grad_fn=<ViewBackward0>)
95f5a46b-59d2-470e-954a-eb54edddb2f9: tensor([0.8372], grad_fn=<ViewBackward0>)
864c7731-1443-4eb8-b7c8-8f742f01c44f: tensor([0.2499], grad_fn=<ViewBackward0>)
57f79646-b167-4531-997d-ea9cb7e80061: tensor([0.8637], grad_fn=<ViewBackward0>)
cb117fea-7b72-4002-9405-446a04c8a15b: tensor([0.2820], grad_fn=<ViewBackward0>)
}
With the embedded parameters, QuantumModel
methods are accessible:
output = tensor([[ 0.3866-0.0075j, 0.1834-0.1075j, -0.0178+0.2515j, -0.2517+0.3832j,
-0.4340-0.2737j, -0.2817-0.0146j, 0.0592+0.2007j, -0.0845+0.3711j],
[ 0.3866-0.0075j, 0.1834-0.1075j, -0.0178+0.2515j, -0.2517+0.3832j,
-0.4340-0.2737j, -0.2817-0.0146j, 0.0592+0.2007j, -0.0845+0.3711j]],
grad_fn=<TBackward0>)
Lower-level: the Backend
representation
If there is a requirement to work with a specific backend, it is possible to access directly the native circuit.
For example, should one wish to use PyQtorch noise features directly instead of using the NoiseHandler
interface from Qadence:
from pyqtorch.noise import Depolarizing
inputs = {"x": torch.rand(1), "y":torch.rand(1)}
embedded = conv.embedding_fn(conv.params, inputs)
# Define a noise channel on qubit 0
noise = Depolarizing(0, error_probability=0.1)
# Add noise to circuit
conv.circuit.native.operations.append(noise)
When running With noise, one can see that the output is a density matrix: