Skip to content

QML tools

ML Tools

This module implements a Trainer class for torch Modules and QuantumModel. It also implements the QNN class and callbacks that can be used with the trainer module.

Trainer(model, optimizer, config, loss_fn='mse', train_dataloader=None, val_dataloader=None, test_dataloader=None, optimize_step=optimize_step, device=None, dtype=None, max_batches=None)

Bases: BaseTrainer

Trainer class to manage and execute training, validation, and testing loops for a model (eg.

QNN).

This class handles the overall training process, including: - Managing epochs and steps - Handling data loading and batching - Computing and updating gradients - Logging and monitoring training metrics

ATTRIBUTE DESCRIPTION
current_epoch

The current epoch number.

TYPE: int

global_step

The global step across all epochs.

TYPE: int

log_device

Device for logging, default is "cpu".

TYPE: str

device

Device used for computation.

TYPE: device

dtype

Data type used for computation.

TYPE: dtype | None

data_dtype

Data type for data. Depends on the model's data type.

TYPE: dtype | None

Inherited Attributes

use_grad (bool): Indicates if gradients are used for optimization. Default is True.

model (nn.Module): The neural network model. optimizer (optim.Optimizer | NGOptimizer | None): The optimizer for training. config (TrainConfig): The configuration settings for training. train_dataloader (DataLoader | DictDataLoader | None): DataLoader for training data. val_dataloader (DataLoader | DictDataLoader | None): DataLoader for validation data. test_dataloader (DataLoader | DictDataLoader | None): DataLoader for testing data.

optimize_step (Callable): Function for performing an optimization step. loss_fn (Callable): loss function to use.

num_training_batches (int): Number of training batches. num_validation_batches (int): Number of validation batches. num_test_batches (int): Number of test batches.

state (str): Current state in the training process

Default training routine

for epoch in max_iter + 1:
    # Training
    for batch in train_batches:
        train model
    # Validation
    if val_every % epoch == 0:
        for batch in val_batches:
            train model

Notes
  • In case of InfiniteTensorDataset, number of batches = 1.
  • In case of TensorDataset, number of batches are default.
  • Training is run for max_iter + 1 epochs. Epoch 0 logs untrained model.
  • Please look at the CallbackManager initialize_callbacks method to review the default logging behavior.

Examples:

import torch
from torch.optim import SGD
from qadence import (
    feature_map,
    hamiltonian_factory,
    hea,
    QNN,
    QuantumCircuit,
    TrainConfig,
    Z,
)
from qadence.ml_tools.trainer import Trainer
from qadence.ml_tools.optimize_step import optimize_step
from qadence.ml_tools import TrainConfig
from qadence.ml_tools.data import to_dataloader

# Initialize the model
n_qubits = 2
fm = feature_map(n_qubits)
ansatz = hea(n_qubits=n_qubits, depth=2)
observable = hamiltonian_factory(n_qubits, detuning=Z)
circuit = QuantumCircuit(n_qubits, fm, ansatz)
model = QNN(circuit, observable, backend="pyqtorch", diff_mode="ad")

# Set up the optimizer
optimizer = SGD(model.parameters(), lr=0.001)

# Use TrainConfig for configuring the training process
config = TrainConfig(
    max_iter=100,
    print_every=10,
    write_every=10,
    checkpoint_every=10,
    val_every=10
)

# Create the Trainer instance with TrainConfig
trainer = Trainer(
    model=model,
    optimizer=optimizer,
    config=config,
    loss_fn="mse",
    optimize_step=optimize_step
)

batch_size = 25
x = torch.linspace(0, 1, 32).reshape(-1, 1)
y = torch.sin(x)
train_loader = to_dataloader(x, y, batch_size=batch_size, infinite=True)
val_loader = to_dataloader(x, y, batch_size=batch_size, infinite=False)

# Train the model
model, optimizer = trainer.fit(train_loader, val_loader)

This also supports both gradient based and gradient free optimization. The default support is for gradient based optimization.

Notes:

  • set_use_grad() (class level):This method is used to set the global use_grad flag, controlling whether the trainer uses gradient-based optimization.
    # gradient based
    Trainer.set_use_grad(True)
    
    # gradient free
    Trainer.set_use_grad(False)
    
  • Context Managers (instance level): enable_grad_opt() and disable_grad_opt() are context managers that temporarily switch the optimization mode for specific code blocks. This is useful when you want to mix gradient-based and gradient-free optimization in the same training process.
    # gradient based
    with trainer.enable_grad_opt(optimizer):
        trainer.fit()
    
    # gradient free
    with trainer.disable_grad_opt(ng_optimizer):
        trainer.fit()
    

Examples

Gradient based optimization example Usage:

from torch import optim
optimizer = optim.SGD(model.parameters(), lr=0.01)

Trainer.set_use_grad(True)
trainer = Trainer(
    model=model,
    optimizer=optimizer,
    config=config,
    loss_fn="mse"
)
trainer.fit(train_loader, val_loader)
or
trainer = Trainer(
    model=model,
    config=config,
    loss_fn="mse"
)
with trainer.enable_grad_opt(optimizer):
    trainer.fit(train_loader, val_loader)

Gradient free optimization example Usage:

import nevergrad as ng
from qadence.ml_tools.parameters import num_parameters
ng_optimizer = ng.optimizers.NGOpt(
                budget=config.max_iter, parametrization= num_parameters(model)
                )

Trainer.set_use_grad(False)
trainer = Trainer(
    model=model,
    optimizer=ng_optimizer,
    config=config,
    loss_fn="mse"
)
trainer.fit(train_loader, val_loader)
or
import nevergrad as ng
from qadence.ml_tools.parameters import num_parameters
ng_optimizer = ng.optimizers.NGOpt(
        budget=config.max_iter, parametrization= num_parameters(model)
        )

trainer = Trainer(
    model=model,
    config=config,
    loss_fn="mse"
)
with trainer.disable_grad_opt(ng_optimizer):
    trainer.fit(train_loader, val_loader)

Initializes the Trainer class.

PARAMETER DESCRIPTION
model

The PyTorch model to train.

TYPE: Module

optimizer

The optimizer for training.

TYPE: Optimizer | Optimizer | None

config

Training configuration object.

TYPE: TrainConfig

loss_fn

Loss function used for training. If not specified, default mse loss will be used.

TYPE: str | Callable DEFAULT: 'mse'

train_dataloader

DataLoader for training data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

val_dataloader

DataLoader for validation data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

test_dataloader

DataLoader for test data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

optimize_step

Function to execute an optimization step.

TYPE: Callable DEFAULT: optimize_step

device

Device to use for computation.

TYPE: device DEFAULT: None

dtype

Data type for computation.

TYPE: dtype DEFAULT: None

max_batches

Maximum number of batches to process per epoch. This is only valid in case of finite TensorDataset dataloaders. if max_batches is not None, the maximum number of batches used will be min(max_batches, len(dataloader.dataset)) In case of InfiniteTensorDataset only 1 batch per epoch is used.

TYPE: int | None DEFAULT: None

Source code in qadence/ml_tools/trainer.py
def __init__(
    self,
    model: nn.Module,
    optimizer: optim.Optimizer | NGOptimizer | None,
    config: TrainConfig,
    loss_fn: str | Callable = "mse",
    train_dataloader: DataLoader | DictDataLoader | None = None,
    val_dataloader: DataLoader | DictDataLoader | None = None,
    test_dataloader: DataLoader | DictDataLoader | None = None,
    optimize_step: Callable = optimize_step,
    device: torch_device | None = None,
    dtype: torch_dtype | None = None,
    max_batches: int | None = None,
):
    """
    Initializes the Trainer class.

    Args:
        model (nn.Module): The PyTorch model to train.
        optimizer (optim.Optimizer | NGOptimizer | None): The optimizer for training.
        config (TrainConfig): Training configuration object.
        loss_fn (str | Callable ): Loss function used for training.
            If not specified, default mse loss will be used.
        train_dataloader (DataLoader | DictDataLoader |  None): DataLoader for training data.
        val_dataloader (DataLoader | DictDataLoader |  None): DataLoader for validation data.
        test_dataloader (DataLoader | DictDataLoader |  None): DataLoader for test data.
        optimize_step (Callable): Function to execute an optimization step.
        device (torch_device): Device to use for computation.
        dtype (torch_dtype): Data type for computation.
        max_batches (int | None): Maximum number of batches to process per epoch.
            This is only valid in case of finite TensorDataset dataloaders.
            if max_batches is not None, the maximum number of batches used will
            be min(max_batches, len(dataloader.dataset))
            In case of InfiniteTensorDataset only 1 batch per epoch is used.
    """
    super().__init__(
        model=model,
        optimizer=optimizer,
        config=config,
        loss_fn=loss_fn,
        optimize_step=optimize_step,
        train_dataloader=train_dataloader,
        val_dataloader=val_dataloader,
        test_dataloader=test_dataloader,
        max_batches=max_batches,
    )
    self.current_epoch: int = 0
    self.global_step: int = 0
    self.log_device: str = "cpu" if device is None else device
    self.device: torch_device | None = device
    self.dtype: torch_dtype | None = dtype
    self.data_dtype: torch_dtype | None = None
    self.stop_training: bool = False
    if self.dtype:
        self.data_dtype = float64 if (self.dtype == complex128) else float32

build_optimize_result(result)

Builds and stores the optimization result by calculating the average loss and metrics.

Result (or loss_metrics) can have multiple formats: - None Indicates no loss or metrics data is provided. - tuple[torch.Tensor, dict[str, Any]] A single tuple containing the loss tensor and metrics dictionary - at the end of batch. - list[tuple[torch.Tensor, dict[str, Any]]] A list of tuples for multiple batches. - list[list[tuple[torch.Tensor, dict[str, Any]]]] A list of lists of tuples, where each inner list represents metrics across multiple batches within an epoch.

PARAMETER DESCRIPTION
result

(None | tuple[torch.Tensor, dict[Any, Any]] | list[tuple[torch.Tensor, dict[Any, Any]]] | list[list[tuple[torch.Tensor, dict[Any, Any]]]]) The loss and metrics data, which can have multiple formats

TYPE: None | tuple[Tensor, dict[Any, Any]] | list[tuple[Tensor, dict[Any, Any]]] | list[list[tuple[Tensor, dict[Any, Any]]]]

RETURNS DESCRIPTION
None

This method does not return anything. It sets self.opt_result with

TYPE: None

None

the computed average loss and metrics.

Source code in qadence/ml_tools/trainer.py
def build_optimize_result(
    self,
    result: None
    | tuple[torch.Tensor, dict[Any, Any]]
    | list[tuple[torch.Tensor, dict[Any, Any]]]
    | list[list[tuple[torch.Tensor, dict[Any, Any]]]],
) -> None:
    """
    Builds and stores the optimization result by calculating the average loss and metrics.

    Result (or loss_metrics) can have multiple formats:
    - `None` Indicates no loss or metrics data is provided.
    - `tuple[torch.Tensor, dict[str, Any]]` A single tuple containing the loss tensor
        and metrics dictionary - at the end of batch.
    - `list[tuple[torch.Tensor, dict[str, Any]]]` A list of tuples for
        multiple batches.
    - `list[list[tuple[torch.Tensor, dict[str, Any]]]]` A list of lists of tuples,
    where each inner list represents metrics across multiple batches within an epoch.

    Args:
        result: (None |
                tuple[torch.Tensor, dict[Any, Any]] |
                list[tuple[torch.Tensor, dict[Any, Any]]] |
                list[list[tuple[torch.Tensor, dict[Any, Any]]]])
                    The loss and metrics data, which can have multiple formats

    Returns:
        None: This method does not return anything. It sets `self.opt_result` with
        the computed average loss and metrics.
    """
    loss_metrics = result
    if loss_metrics is None:
        loss = None
        metrics: dict[Any, Any] = {}
    elif isinstance(loss_metrics, tuple):
        # Single tuple case
        loss, metrics = loss_metrics
    else:
        last_epoch: list[tuple[torch.Tensor, dict[Any, Any]]] = []
        if isinstance(loss_metrics, list):
            # Check if it's a list of tuples
            if all(isinstance(item, tuple) for item in loss_metrics):
                last_epoch = cast(list[tuple[torch.Tensor, dict[Any, Any]]], loss_metrics)
            # Check if it's a list of lists of tuples
            elif all(isinstance(item, list) for item in loss_metrics):
                last_epoch = cast(
                    list[tuple[torch.Tensor, dict[Any, Any]]],
                    loss_metrics[-1] if loss_metrics else [],
                )
            else:
                raise ValueError(
                    "Invalid format for result: Expected None, tuple, list of tuples,"
                    " or list of lists of tuples."
                )

        if not last_epoch:
            loss, metrics = None, {}
        else:
            # Compute the average loss over the batches
            loss_tensor = torch.stack([loss_batch for loss_batch, _ in last_epoch])
            avg_loss = loss_tensor.mean()

            # Collect and average metrics for all batches
            metric_keys = last_epoch[0][1].keys()
            metrics_stacked: dict = {key: [] for key in metric_keys}

            for _, metrics_batch in last_epoch:
                for key in metric_keys:
                    value = metrics_batch[key]
                    metrics_stacked[key].append(value)

            avg_metrics = {key: torch.stack(metrics_stacked[key]).mean() for key in metric_keys}

            loss, metrics = avg_loss, avg_metrics

    # Store the optimization result
    self.opt_result = OptimizeResult(
        self.current_epoch, self.model_old, self.optimizer_old, loss, metrics
    )

fit(train_dataloader=None, val_dataloader=None)

Fits the model using the specified training configuration.

The dataloaders can be provided to train on new datasets, or the default dataloaders provided in the trainer will be used.

PARAMETER DESCRIPTION
train_dataloader

DataLoader for training data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

val_dataloader

DataLoader for validation data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

RETURNS DESCRIPTION
tuple[Module, Optimizer]

tuple[nn.Module, optim.Optimizer]: The trained model and optimizer.

Source code in qadence/ml_tools/trainer.py
def fit(
    self,
    train_dataloader: DataLoader | DictDataLoader | None = None,
    val_dataloader: DataLoader | DictDataLoader | None = None,
) -> tuple[nn.Module, optim.Optimizer]:
    """
    Fits the model using the specified training configuration.

    The dataloaders can be provided to train on new datasets, or the default dataloaders
    provided in the trainer will be used.

    Args:
        train_dataloader (DataLoader | DictDataLoader |  None): DataLoader for training data.
        val_dataloader (DataLoader | DictDataLoader |  None): DataLoader for validation data.

    Returns:
        tuple[nn.Module, optim.Optimizer]: The trained model and optimizer.
    """
    if train_dataloader is not None:
        self.train_dataloader = train_dataloader
    if val_dataloader is not None:
        self.val_dataloader = val_dataloader

    self._fit_setup()
    self._train()
    self._fit_end()
    self.training_stage = TrainingStage("idle")
    return self.model, self.optimizer

run_test_batch(batch)

Runs a single test batch.

PARAMETER DESCRIPTION
batch

Batch of data from the DataLoader.

TYPE: tuple[Tensor, ...]

RETURNS DESCRIPTION
tuple[Tensor, dict[str, Any]]

tuple[torch.Tensor, dict[str, Any]]: Loss and metrics for the batch.

Source code in qadence/ml_tools/trainer.py
@BaseTrainer.callback("test_batch")
def run_test_batch(
    self, batch: tuple[torch.Tensor, ...]
) -> tuple[torch.Tensor, dict[str, Any]]:
    """
    Runs a single test batch.

    Args:
        batch (tuple[torch.Tensor, ...]): Batch of data from the DataLoader.

    Returns:
        tuple[torch.Tensor, dict[str, Any]]: Loss and metrics for the batch.
    """
    with torch.no_grad():
        loss_metrics = self.loss_fn(self.model, batch)
    return self._modify_batch_end_loss_metrics(loss_metrics)

run_train_batch(batch)

Runs a single training batch, performing optimization.

We use the step function to optimize the model based on use_grad. use_grad = True entails gradient based optimization, for which we use optimize_step function. use_grad = False entails gradient free optimization, for which we use update_ng_parameters function.

PARAMETER DESCRIPTION
batch

Batch of data from the DataLoader.

TYPE: tuple[Tensor, ...]

RETURNS DESCRIPTION
tuple[Tensor, dict[str, Any]]

tuple[torch.Tensor, dict[str, Any]]: Loss and metrics for the batch. tuple of (loss, metrics)

Source code in qadence/ml_tools/trainer.py
@BaseTrainer.callback("train_batch")
def run_train_batch(
    self, batch: tuple[torch.Tensor, ...]
) -> tuple[torch.Tensor, dict[str, Any]]:
    """
    Runs a single training batch, performing optimization.

    We use the step function to optimize the model based on use_grad.
        use_grad = True entails gradient based optimization, for which we use
        optimize_step function.
        use_grad = False entails gradient free optimization, for which we use
        update_ng_parameters function.

    Args:
        batch (tuple[torch.Tensor, ...]): Batch of data from the DataLoader.

    Returns:
        tuple[torch.Tensor, dict[str, Any]]: Loss and metrics for the batch.
            tuple of (loss, metrics)
    """

    if self.use_grad:
        # Perform gradient-based optimization
        loss_metrics = self.optimize_step(
            model=self.model,
            optimizer=self.optimizer,
            loss_fn=self.loss_fn,
            xs=batch,
            device=self.device,
            dtype=self.data_dtype,
        )
    else:
        # Perform optimization using Nevergrad
        loss, metrics, ng_params = update_ng_parameters(
            model=self.model,
            optimizer=self.optimizer,
            loss_fn=self.loss_fn,
            data=batch,
            ng_params=self.ng_params,  # type: ignore[arg-type]
        )
        self.ng_params = ng_params
        loss_metrics = loss, metrics

    return self._modify_batch_end_loss_metrics(loss_metrics)

run_training(dataloader)

Runs the training for a single epoch, iterating over multiple batches.

PARAMETER DESCRIPTION
dataloader

DataLoader for training data.

TYPE: DataLoader

RETURNS DESCRIPTION
list[tuple[Tensor, dict[str, Any]]]

list[tuple[torch.Tensor, dict[str, Any]]]: Loss and metrics for each batch. list -> tuples Training Batches -> (loss, metrics)

Source code in qadence/ml_tools/trainer.py
@BaseTrainer.callback("train_epoch")
def run_training(self, dataloader: DataLoader) -> list[tuple[torch.Tensor, dict[str, Any]]]:
    """
    Runs the training for a single epoch, iterating over multiple batches.

    Args:
        dataloader (DataLoader): DataLoader for training data.

    Returns:
        list[tuple[torch.Tensor, dict[str, Any]]]: Loss and metrics for each batch.
            list                  -> tuples
            Training Batches      -> (loss, metrics)
    """
    self.model.train()
    train_epoch_loss_metrics = []
    # Quick Fix for iteration 0
    self._reset_model_and_opt()

    for batch in self._batch_iter(dataloader, self.num_training_batches):
        self.on_train_batch_start(batch)
        train_batch_loss_metrics = self.run_train_batch(batch)
        train_epoch_loss_metrics.append(train_batch_loss_metrics)
        self.on_train_batch_end(train_batch_loss_metrics)

    return train_epoch_loss_metrics

run_val_batch(batch)

Runs a single validation batch.

PARAMETER DESCRIPTION
batch

Batch of data from the DataLoader.

TYPE: tuple[Tensor, ...]

RETURNS DESCRIPTION
tuple[Tensor, dict[str, Any]]

tuple[torch.Tensor, dict[str, Any]]: Loss and metrics for the batch.

Source code in qadence/ml_tools/trainer.py
@BaseTrainer.callback("val_batch")
def run_val_batch(self, batch: tuple[torch.Tensor, ...]) -> tuple[torch.Tensor, dict[str, Any]]:
    """
    Runs a single validation batch.

    Args:
        batch (tuple[torch.Tensor, ...]): Batch of data from the DataLoader.

    Returns:
        tuple[torch.Tensor, dict[str, Any]]: Loss and metrics for the batch.
    """
    with torch.no_grad():
        loss_metrics = self.loss_fn(self.model, batch)
    return self._modify_batch_end_loss_metrics(loss_metrics)

run_validation(dataloader)

Runs the validation loop for a single epoch, iterating over multiple batches.

PARAMETER DESCRIPTION
dataloader

DataLoader for validation data.

TYPE: DataLoader

RETURNS DESCRIPTION
list[tuple[Tensor, dict[str, Any]]]

list[tuple[torch.Tensor, dict[str, Any]]]: Loss and metrics for each batch. list -> tuples Validation Batches -> (loss, metrics)

Source code in qadence/ml_tools/trainer.py
@BaseTrainer.callback("val_epoch")
def run_validation(self, dataloader: DataLoader) -> list[tuple[torch.Tensor, dict[str, Any]]]:
    """
    Runs the validation loop for a single epoch, iterating over multiple batches.

    Args:
        dataloader (DataLoader): DataLoader for validation data.

    Returns:
        list[tuple[torch.Tensor, dict[str, Any]]]: Loss and metrics for each batch.
            list                  -> tuples
            Validation Batches      -> (loss, metrics)
    """
    self.model.eval()
    val_epoch_loss_metrics = []

    for batch in self._batch_iter(dataloader, self.num_validation_batches):
        self.on_val_batch_start(batch)
        val_batch_loss_metrics = self.run_val_batch(batch)
        val_epoch_loss_metrics.append(val_batch_loss_metrics)
        self.on_val_batch_end(val_batch_loss_metrics)

    return val_epoch_loss_metrics

test(test_dataloader=None)

Runs the testing loop if a test DataLoader is provided.

if the test_dataloader is not provided, default test_dataloader defined in the Trainer class is used.

PARAMETER DESCRIPTION
test_dataloader

DataLoader for test data.

TYPE: DataLoader DEFAULT: None

RETURNS DESCRIPTION
list[tuple[Tensor, dict[str, Any]]]

list[tuple[torch.Tensor, dict[str, Any]]]: Loss and metrics for each batch. list -> tuples Test Batches -> (loss, metrics)

Source code in qadence/ml_tools/trainer.py
def test(self, test_dataloader: DataLoader = None) -> list[tuple[torch.Tensor, dict[str, Any]]]:
    """
    Runs the testing loop if a test DataLoader is provided.

    if the test_dataloader is not provided, default test_dataloader defined
    in the Trainer class is used.

    Args:
        test_dataloader (DataLoader): DataLoader for test data.

    Returns:
        list[tuple[torch.Tensor, dict[str, Any]]]: Loss and metrics for each batch.
            list                    -> tuples
            Test Batches            -> (loss, metrics)
    """
    if test_dataloader is not None:
        self.test_dataloader = test_dataloader

    self.model.eval()
    test_loss_metrics = []

    for batch in self._batch_iter(test_dataloader, self.num_training_batches):
        self.on_test_batch_start(batch)
        loss_metrics = self.run_test_batch(batch)
        test_loss_metrics.append(loss_metrics)
        self.on_test_batch_end(loss_metrics)

    return test_loss_metrics

AnsatzConfig(depth=1, ansatz_type=AnsatzType.HEA, ansatz_strategy=Strategy.DIGITAL, strategy_args=dict(), param_prefix='theta', tag=None) dataclass

ansatz_strategy: Strategy = Strategy.DIGITAL class-attribute instance-attribute

Ansatz strategy.

Strategy.DIGITAL for fully digital ansatz. Required if ansatz_type is AnsatzType.IIA. Strategy.SDAQC for analog entangling block. Strategy.RYDBERG for fully rydberg hea ansatz.

ansatz_type: AnsatzType = AnsatzType.HEA class-attribute instance-attribute

What type of ansatz.

AnsatzType.HEA for Hardware Efficient Ansatz. AnsatzType.IIA for Identity intialized Ansatz.

depth: int = 1 class-attribute instance-attribute

Number of layers of the ansatz.

param_prefix: str = 'theta' class-attribute instance-attribute

The base bame of the variational parameter.

strategy_args: dict = field(default_factory=dict) class-attribute instance-attribute

A dictionary containing keyword arguments to the function creating the ansatz.

Details about each below.

For Strategy.DIGITAL strategy, accepts the following: periodic (bool): if the qubits should be linked periodically. periodic=False is not supported in emu-c. operations (list): list of operations to cycle through in the digital single-qubit rotations of each layer. Defaults to [RX, RY, RX] for hea and [RX, RY] for iia. entangler (AbstractBlock): 2-qubit entangling operation. Supports CNOT, CZ, CRX, CRY, CRZ, CPHASE. Controlld rotations will have variational parameters on the rotation angles. Defaults to CNOT

For Strategy.SDAQC strategy, accepts the following: operations (list): list of operations to cycle through in the digital single-qubit rotations of each layer. Defaults to [RX, RY, RX] for hea and [RX, RY] for iia. entangler (AbstractBlock): Hamiltonian generator for the analog entangling layer. Time parameter is considered variational. Defaults to NN interaction.

For Strategy.RYDBERG strategy, accepts the following: addressable_detuning: whether to turn on the trainable semi-local addressing pattern on the detuning (n_i terms in the Hamiltonian). Defaults to True. addressable_drive: whether to turn on the trainable semi-local addressing pattern on the drive (sigma_i^x terms in the Hamiltonian). Defaults to False. tunable_phase: whether to have a tunable phase to get both sigma^x and sigma^y rotations in the drive term. If False, only a sigma^x term will be included in the drive part of the Hamiltonian generator. Defaults to False.

tag: str | None = None class-attribute instance-attribute

String to indicate the name tag of the ansatz.

Defaults to None, in which case no tag will be applied.

FeatureMapConfig(num_features=0, basis_set=BasisSet.FOURIER, reupload_scaling=ReuploadScaling.CONSTANT, feature_range=None, target_range=None, multivariate_strategy=MultivariateStrategy.PARALLEL, feature_map_strategy=Strategy.DIGITAL, param_prefix=None, num_repeats=0, operation=None, inputs=None, tag=None) dataclass

basis_set: BasisSet | dict[str, BasisSet] = BasisSet.FOURIER class-attribute instance-attribute

Basis set for feature encoding.

Takes qadence.BasisSet. Give a single BasisSet to use the same for all features. Give a dict of (str, BasisSet) where the key is the name of the variable and the value is the BasisSet to use for encoding that feature. BasisSet.FOURIER for Fourier encoding. BasisSet.CHEBYSHEV for Chebyshev encoding.

feature_map_strategy: Strategy = Strategy.DIGITAL class-attribute instance-attribute

Strategy for feature map.

Accepts DIGITAL, ANALOG or RYDBERG. Defaults to DIGITAL. If the strategy is incompatible with the operation chosen, then operation gets preference and the given strategy is ignored.

feature_range: tuple[float, float] | dict[str, tuple[float, float]] | None = None class-attribute instance-attribute

Range of data that the input data is assumed to come from.

Give a single tuple to use the same range for all features. Give a dict of (str, tuple) where the key is the name of the variable and the value is the feature range to use for that feature.

inputs: list[Basic | str] | None = None class-attribute instance-attribute

List that indicates the order of variables of the tensors that are passed.

Optional if a single feature is being encoded, required otherwise. Given input tensors xs = torch.rand(batch_size, input_size:=2) a QNN with inputs=["t", "x"] will assign t, x = xs[:,0], xs[:,1].

multivariate_strategy: MultivariateStrategy = MultivariateStrategy.PARALLEL class-attribute instance-attribute

The encoding strategy in case of multi-variate function.

Takes qadence.MultivariateStrategy. If PARALLEL, the features are encoded in one block of rotation gates with the register being split in sub-registers for each feature. If SERIES, the features are encoded sequentially using the full register for each feature, with an ansatz block between them. PARALLEL is allowed only for DIGITAL feature_map_strategy.

num_features: int = 0 class-attribute instance-attribute

Number of feature parameters to be encoded.

Defaults to 0. Thus, no feature parameters are encoded.

num_repeats: int | dict[str, int] = 0 class-attribute instance-attribute

Number of feature map layers repeated in the data reuploading step.

If all features are to be repeated the same number of times, then can give a single int. For different number of repetitions for each feature, provide a dict of (str, int) where the key is the name of the variable and the value is the number of repetitions for that feature. This amounts to the number of additional reuploads. So if num_repeats is N, the data gets uploaded N+1 times. Defaults to no repetition.

operation: Callable[[Parameter | Basic], AnalogBlock] | Type[RX] | None = None class-attribute instance-attribute

Type of operation.

Choose among the analog or digital rotations or a custom callable function returning an AnalogBlock instance. If the type of operation is incompatible with the strategy chosen, then operation gets preference and the given strategy is ignored.

param_prefix: str | None = None class-attribute instance-attribute

String prefix to create trainable parameters in Feature Map.

A string prefix to create trainable parameters multiplying the feature parameter inside the feature-encoding function. Note that currently this does not take into account the domain of the feature-encoding function. Defaults to None and thus, the feature map is not trainable. Note that this is separate from the name of the parameter. The user can provide a single prefix for all features, and it will be appended by appropriate feature name automatically.

reupload_scaling: ReuploadScaling | dict[str, ReuploadScaling] = ReuploadScaling.CONSTANT class-attribute instance-attribute

Scaling for encoding the same feature on different qubits.

Scaling used to encode the same feature on different qubits in the same layer of the feature maps. Takes qadence.ReuploadScaling. Give a single ReuploadScaling to use the same for all features. Give a dict of (str, ReuploadScaling) where the key is the name of the variable and the value is the ReuploadScaling to use for encoding that feature. ReuploadScaling.CONSTANT for constant scaling. ReuploadScaling.TOWER for linearly increasing scaling. ReuploadScaling.EXP for exponentially increasing scaling.

tag: str | None = None class-attribute instance-attribute

String to indicate the name tag of the feature map.

Defaults to None, in which case no tag will be applied.

target_range: tuple[float, float] | dict[str, tuple[float, float]] | None = None class-attribute instance-attribute

Range of data the data encoder assumes as natural range.

Give a single tuple to use the same range for all features. Give a dict of (str, tuple) where the key is the name of the variable and the value is the target range to use for that feature.

TrainConfig(max_iter=10000, print_every=0, write_every=0, checkpoint_every=0, plot_every=0, callbacks=lambda: list()(), log_model=False, root_folder=Path('./qml_logs'), create_subfolder_per_run=False, log_folder=Path('./'), checkpoint_best_only=False, val_every=0, val_epsilon=1e-05, validation_criterion=None, trainstop_criterion=None, batch_size=1, verbose=True, tracking_tool=ExperimentTrackingTool.TENSORBOARD, hyperparams=dict(), plotting_functions=tuple(), _subfolders=list()) dataclass

Default configuration for the training process.

This class provides default settings for various aspects of the training loop, such as logging, checkpointing, and validation. The default values for these fields can be customized when an instance of TrainConfig is created.

Example:

from qadence.ml_tools import TrainConfig
c = TrainConfig(root_folder="/tmp/train")
TrainConfig(max_iter=10000, print_every=0, write_every=0, checkpoint_every=0, plot_every=0, callbacks=[], log_model=False, root_folder='/tmp/train', create_subfolder_per_run=False, log_folder=PosixPath('.'), checkpoint_best_only=False, val_every=0, val_epsilon=1e-05, validation_criterion=None, trainstop_criterion=None, batch_size=1, verbose=True, tracking_tool=<ExperimentTrackingTool.TENSORBOARD: 'tensorboard'>, hyperparams={}, plotting_functions=(), _subfolders=[])

batch_size: int = 1 class-attribute instance-attribute

The batch size to use when processing a list or tuple of torch.Tensors.

This specifies how many samples are processed in each training iteration.

callbacks: list = field(default_factory=lambda: list()) class-attribute instance-attribute

List of callbacks to execute during training.

Callbacks can be used for custom behaviors, such as early stopping, custom logging, or other actions triggered at specific events.

checkpoint_best_only: bool = False class-attribute instance-attribute

If True, checkpoints are only saved if there is an improvement in the.

validation metric. This conserves storage by only keeping the best models.

validation_criterion is required when this is set to True.

checkpoint_every: int = 0 class-attribute instance-attribute

Frequency (in epochs) for saving model and optimizer checkpoints during training.

Set to 0 to disable checkpointing. This helps in resuming training or recovering models. Note that setting checkpoint_best_only = True will disable this and only best checkpoints will be saved.

create_subfolder_per_run: bool = False class-attribute instance-attribute

Whether to create a subfolder for each run, named <id>_<timestamp>_<PID>.

This ensures logs and checkpoints from different runs do not overwrite each other, which is helpful for rapid prototyping. If False, training will resume from the latest checkpoint if one exists in the specified log folder.

hyperparams: dict = field(default_factory=dict) class-attribute instance-attribute

A dictionary of hyperparameters to be tracked.

This can include learning rates, regularization parameters, or any other training-related configurations.

log_folder: Path = Path('./') class-attribute instance-attribute

The log folder for saving checkpoints and tensorboard logs.

This stores the path where all logs and checkpoints are being saved for this training session. log_folder takes precedence over root_folder and create_subfolder_per_run arguments. If the user specifies a log_folder, all checkpoints will be saved in this folder and root_folder argument will not be used.

log_model: bool = False class-attribute instance-attribute

Whether to log a serialized version of the model.

When set to True, the model's state will be logged, useful for model versioning and reproducibility.

max_iter: int = 10000 class-attribute instance-attribute

Number of training iterations (epochs) to perform.

This defines the total number of times the model will be updated.

In case of InfiniteTensorDataset, each epoch will have 1 batch. In case of TensorDataset, each epoch will have len(dataloader) batches.

plot_every: int = 0 class-attribute instance-attribute

Frequency (in epochs) for generating and saving figures during training.

Set to 0 to disable plotting.

plotting_functions: tuple[LoggablePlotFunction, ...] = field(default_factory=tuple) class-attribute instance-attribute

Functions used for in-training plotting.

These are called to generate plots that are logged or saved at specified intervals.

print_every: int = 0 class-attribute instance-attribute

Frequency (in epochs) for printing loss and metrics to the console during training.

Set to 0 to disable this output, meaning that metrics and loss will not be printed during training.

root_folder: Path = Path('./qml_logs') class-attribute instance-attribute

The root folder for saving checkpoints and tensorboard logs.

The default path is "./qml_logs"

This can be set to a specific directory where training artifacts are to be stored. Checkpoints will be saved inside a subfolder in this directory. Subfolders will be created based on create_subfolder_per_run argument.

tracking_tool: ExperimentTrackingTool = ExperimentTrackingTool.TENSORBOARD class-attribute instance-attribute

The tool used for tracking training progress and logging metrics.

Options include tools like TensorBoard, which help visualize and monitor model training.

trainstop_criterion: Callable | None = None class-attribute instance-attribute

A function to determine if the training process should stop based on a.

specific stopping metric. If None, training continues until max_iter is reached.

val_epsilon: float = 1e-05 class-attribute instance-attribute

A small safety margin used to compare the current validation loss with the.

best previous validation loss. This is used to determine improvements in metrics.

val_every: int = 0 class-attribute instance-attribute

Frequency (in epochs) for performing validation.

If set to 0, validation is not performed. Note that metrics from validation are always written, regardless of the write_every setting. Note that initial validation happens at the start of training (when val_every > 0) For initial validation - initial metrics are written. - checkpoint is saved (when checkpoint_best_only = False)

validation_criterion: Callable | None = None class-attribute instance-attribute

A function to evaluate whether a given validation metric meets a desired condition.

The validation_criterion has the following format: def validation_criterion(val_loss: float, best_val_loss: float, val_epsilon: float) -> bool: # process

If None, no custom validation criterion is applied.

verbose: bool = True class-attribute instance-attribute

Whether to print metrics and status messages during training.

If True, detailed metrics and status updates will be displayed in the console.

write_every: int = 0 class-attribute instance-attribute

Frequency (in epochs) for writing loss and metrics using the tracking tool during training.

Set to 0 to disable this logging, which prevents metrics from being logged to the tracking tool. Note that the metrics will always be written at the end of training regardless of this setting.

get_parameters(model)

Retrieve all trainable model parameters in a single vector.

PARAMETER DESCRIPTION
model

the input PyTorch model

TYPE: Module

RETURNS DESCRIPTION
Tensor

a 1-dimensional tensor with the parameters

TYPE: Tensor

Source code in qadence/ml_tools/parameters.py
def get_parameters(model: Module) -> Tensor:
    """Retrieve all trainable model parameters in a single vector.

    Args:
        model (Module): the input PyTorch model

    Returns:
        Tensor: a 1-dimensional tensor with the parameters
    """
    ps = [p.reshape(-1) for p in model.parameters() if p.requires_grad]
    return torch.concat(ps)

num_parameters(model)

Return the total number of parameters of the given model.

Source code in qadence/ml_tools/parameters.py
def num_parameters(model: Module) -> int:
    """Return the total number of parameters of the given model."""
    return len(get_parameters(model))

set_parameters(model, theta)

Set all trainable parameters of a model from a single vector.

Notice that this function assumes prior knowledge of right number of parameters in the model

PARAMETER DESCRIPTION
model

the input PyTorch model

TYPE: Module

theta

the parameters to assign

TYPE: Tensor

Source code in qadence/ml_tools/parameters.py
def set_parameters(model: Module, theta: Tensor) -> None:
    """Set all trainable parameters of a model from a single vector.

    Notice that this function assumes prior knowledge of right number
    of parameters in the model

    Args:
        model (Module): the input PyTorch model
        theta (Tensor): the parameters to assign
    """

    with torch.no_grad():
        idx = 0
        for ps in model.parameters():
            if ps.requires_grad:
                n = torch.numel(ps)
                if ps.ndim == 0:
                    ps[()] = theta[idx : idx + n]
                else:
                    ps[:] = theta[idx : idx + n].reshape(ps.size())
                idx += n

optimize_step(model, optimizer, loss_fn, xs, device=None, dtype=None)

Default Torch optimize step with closure.

This is the default optimization step.

PARAMETER DESCRIPTION
model

The input model to be optimized.

TYPE: Module

optimizer

The chosen Torch optimizer.

TYPE: Optimizer

loss_fn

A custom loss function that returns the loss value and a dictionary of metrics.

TYPE: Callable

xs

The input data. If None, it means the given model does not require any input data.

TYPE: dict | list | Tensor | None

device

A target device to run computations on.

TYPE: device DEFAULT: None

dtype

Data type for xs conversion.

TYPE: dtype DEFAULT: None

RETURNS DESCRIPTION
tuple[Tensor | float, dict | None]

tuple[Tensor | float, dict | None]: A tuple containing the computed loss value and a dictionary with collected metrics.

Source code in qadence/ml_tools/optimize_step.py
def optimize_step(
    model: Module,
    optimizer: Optimizer,
    loss_fn: Callable,
    xs: dict | list | torch.Tensor | None,
    device: torch.device = None,
    dtype: torch.dtype = None,
) -> tuple[torch.Tensor | float, dict | None]:
    """Default Torch optimize step with closure.

    This is the default optimization step.

    Args:
        model (Module): The input model to be optimized.
        optimizer (Optimizer): The chosen Torch optimizer.
        loss_fn (Callable): A custom loss function
            that returns the loss value and a dictionary of metrics.
        xs (dict | list | Tensor | None): The input data. If None, it means
            the given model does not require any input data.
        device (torch.device): A target device to run computations on.
        dtype (torch.dtype): Data type for `xs` conversion.

    Returns:
        tuple[Tensor | float, dict | None]: A tuple containing the computed loss value
            and a dictionary with collected metrics.
    """

    loss, metrics = None, {}
    xs_to_device = data_to_device(xs, device=device, dtype=dtype)

    def closure() -> Any:
        # NOTE: We need the nonlocal as we can't return a metric dict and
        # because e.g. LBFGS calls this closure multiple times but for some
        # reason the returned loss is always the first one...
        nonlocal metrics, loss
        optimizer.zero_grad()
        loss, metrics = loss_fn(model, xs_to_device)
        loss.backward(retain_graph=True)
        return loss.item()

    optimizer.step(closure)
    # return the loss/metrics that are being mutated inside the closure...
    return loss, metrics

update_ng_parameters(model, optimizer, loss_fn, data, ng_params)

Update the model parameters using Nevergrad.

This function integrates Nevergrad for derivative-free optimization.

PARAMETER DESCRIPTION
model

The PyTorch model to be optimized.

TYPE: Module

optimizer

A Nevergrad optimizer instance.

TYPE: Optimizer

loss_fn

A custom loss function that returns the loss value and a dictionary of metrics.

TYPE: Callable[[Module, Tensor | None], tuple[float, dict]]

data

Input data for the model. If None, it means the model does not require input data.

TYPE: Tensor | None

ng_params

The current set of parameters managed by Nevergrad.

TYPE: Array

RETURNS DESCRIPTION
tuple[float, dict, Array]

tuple[float, dict, ng.p.Array]: A tuple containing the computed loss value, a dictionary of metrics, and the updated Nevergrad parameters.

Source code in qadence/ml_tools/optimize_step.py
def update_ng_parameters(
    model: Module,
    optimizer: ng.optimizers.Optimizer,
    loss_fn: Callable[[Module, torch.Tensor | None], tuple[float, dict]],
    data: torch.Tensor | None,
    ng_params: ng.p.Array,
) -> tuple[float, dict, ng.p.Array]:
    """Update the model parameters using Nevergrad.

    This function integrates Nevergrad for derivative-free optimization.

    Args:
        model (Module): The PyTorch model to be optimized.
        optimizer (ng.optimizers.Optimizer): A Nevergrad optimizer instance.
        loss_fn (Callable[[Module, Tensor | None], tuple[float, dict]]): A custom loss function
            that returns the loss value and a dictionary of metrics.
        data (Tensor | None): Input data for the model. If None, it means the model does
            not require input data.
        ng_params (ng.p.Array): The current set of parameters managed by Nevergrad.

    Returns:
        tuple[float, dict, ng.p.Array]: A tuple containing the computed loss value,
            a dictionary of metrics, and the updated Nevergrad parameters.
    """
    loss, metrics = loss_fn(model, data)  # type: ignore[misc]
    optimizer.tell(ng_params, float(loss))
    ng_params = optimizer.ask()  # type: ignore[assignment]
    params = promote_to_tensor(ng_params.value, requires_grad=False)
    set_parameters(model, params)
    return loss, metrics, ng_params

DictDataLoader(dataloaders) dataclass

This class only holds a dictionary of DataLoaders and samples from them.

InfiniteTensorDataset(*tensors)

Bases: IterableDataset

Randomly sample points from the first dimension of the given tensors.

Behaves like a normal torch Dataset just that we can sample from it as many times as we want.

Examples:

import torch
from qadence.ml_tools.data import InfiniteTensorDataset

x_data, y_data = torch.rand(5,2), torch.ones(5,1)
# The dataset accepts any number of tensors with the same batch dimension
ds = InfiniteTensorDataset(x_data, y_data)

# call `next` to get one sample from each tensor:
xs = next(iter(ds))
(tensor([0.4300, 0.5015]), tensor([1.]))

Source code in qadence/ml_tools/data.py
def __init__(self, *tensors: Tensor):
    """Randomly sample points from the first dimension of the given tensors.

    Behaves like a normal torch `Dataset` just that we can sample from it as
    many times as we want.

    Examples:
    ```python exec="on" source="above" result="json"
    import torch
    from qadence.ml_tools.data import InfiniteTensorDataset

    x_data, y_data = torch.rand(5,2), torch.ones(5,1)
    # The dataset accepts any number of tensors with the same batch dimension
    ds = InfiniteTensorDataset(x_data, y_data)

    # call `next` to get one sample from each tensor:
    xs = next(iter(ds))
    print(str(xs)) # markdown-exec: hide
    ```
    """
    self.tensors = tensors
    self.indices = list(range(self.tensors[0].size(0)))

OptimizeResult(iteration, model, optimizer, loss=None, metrics=lambda: dict()(), extra=lambda: dict()()) dataclass

OptimizeResult stores many optimization intermediate values.

We store at a current iteration, the model, optimizer, loss values, metrics. An extra dict can be used for saving other information to be used for callbacks.

extra: dict = field(default_factory=lambda: dict()) class-attribute instance-attribute

Extra dict for saving anything else to be used in callbacks.

iteration: int instance-attribute

Current iteration number.

loss: Tensor | float | None = None class-attribute instance-attribute

Loss value.

metrics: dict = field(default_factory=lambda: dict()) class-attribute instance-attribute

Metrics that can be saved during training.

model: Module instance-attribute

Model at iteration.

optimizer: Optimizer | NGOptimizer instance-attribute

Optimizer at iteration.

data_to_device(xs, *args, **kwargs)

Utility method to move arbitrary data to 'device'.

Source code in qadence/ml_tools/data.py
@singledispatch
def data_to_device(xs: Any, *args: Any, **kwargs: Any) -> Any:
    """Utility method to move arbitrary data to 'device'."""
    raise ValueError(f"Unable to move {type(xs)} with input args: {args} and kwargs: {kwargs}.")

to_dataloader(*tensors, batch_size=1, infinite=False)

Convert torch tensors an (infinite) Dataloader.

PARAMETER DESCRIPTION
*tensors

Torch tensors to use in the dataloader.

TYPE: Tensor DEFAULT: ()

batch_size

batch size of sampled tensors

TYPE: int DEFAULT: 1

infinite

if True, the dataloader will keep sampling indefinitely even after the whole dataset was sampled once

TYPE: bool DEFAULT: False

Examples:

import torch
from qadence.ml_tools import to_dataloader

(x, y, z) = [torch.rand(10) for _ in range(3)]
loader = iter(to_dataloader(x, y, z, batch_size=5, infinite=True))
print(next(loader))
print(next(loader))
print(next(loader))
[tensor([0.8244, 0.2922, 0.3246, 0.6345, 0.7915]), tensor([0.4082, 0.7652, 0.1494, 0.6814, 0.9754]), tensor([0.8941, 0.1731, 0.6468, 0.8306, 0.5045])]
[tensor([0.8815, 0.2183, 0.1525, 0.8522, 0.3831]), tensor([0.2366, 0.4871, 0.4839, 0.8105, 0.1986]), tensor([0.1423, 0.6649, 0.1249, 0.9310, 0.9246])]
[tensor([0.8244, 0.2922, 0.3246, 0.6345, 0.7915]), tensor([0.4082, 0.7652, 0.1494, 0.6814, 0.9754]), tensor([0.8941, 0.1731, 0.6468, 0.8306, 0.5045])]
Source code in qadence/ml_tools/data.py
def to_dataloader(*tensors: Tensor, batch_size: int = 1, infinite: bool = False) -> DataLoader:
    """Convert torch tensors an (infinite) Dataloader.

    Arguments:
        *tensors: Torch tensors to use in the dataloader.
        batch_size: batch size of sampled tensors
        infinite: if `True`, the dataloader will keep sampling indefinitely even after the whole
            dataset was sampled once

    Examples:

    ```python exec="on" source="above" result="json"
    import torch
    from qadence.ml_tools import to_dataloader

    (x, y, z) = [torch.rand(10) for _ in range(3)]
    loader = iter(to_dataloader(x, y, z, batch_size=5, infinite=True))
    print(next(loader))
    print(next(loader))
    print(next(loader))
    ```
    """
    ds = InfiniteTensorDataset(*tensors) if infinite else TensorDataset(*tensors)
    return DataLoader(ds, batch_size=batch_size)

QNN(circuit, observable, backend=BackendName.PYQTORCH, diff_mode=DiffMode.AD, measurement=None, noise=None, configuration=None, inputs=None, input_diff_mode=InputDiffMode.AD)

Bases: QuantumModel

Quantum neural network model for n-dimensional inputs.

Examples:

import torch
from qadence import QuantumCircuit, QNN, Z
from qadence import hea, feature_map, hamiltonian_factory, kron

# create the circuit
n_qubits, depth = 2, 4
fm = kron(
    feature_map(1, support=(0,), param="x"),
    feature_map(1, support=(1,), param="y")
)
ansatz = hea(n_qubits=n_qubits, depth=depth)
circuit = QuantumCircuit(n_qubits, fm, ansatz)
obs_base = hamiltonian_factory(n_qubits, detuning=Z)

# the QNN will yield two outputs
obs = [2.0 * obs_base, 4.0 * obs_base]

# initialize and use the model
qnn = QNN(circuit, obs, inputs=["x", "y"])
y = qnn(torch.rand(3, 2))
tensor([[-0.4102, -0.8204],
        [ 0.0515,  0.1030],
        [ 0.0287,  0.0573]], grad_fn=<CatBackward0>)

Initialize the QNN.

The number of inputs is determined by the feature parameters in the input quantum circuit while the number of outputs is determined by how many observables are provided as input

PARAMETER DESCRIPTION
circuit

The quantum circuit to use for the QNN.

TYPE: QuantumCircuit

observable

The observable.

TYPE: list[AbstractBlock] | AbstractBlock

backend

The chosen quantum backend.

TYPE: BackendName DEFAULT: PYQTORCH

diff_mode

The differentiation engine to use. Choices 'gpsr' or 'ad'.

TYPE: DiffMode DEFAULT: AD

measurement

optional measurement protocol. If None, use exact expectation value with a statevector simulator

TYPE: Measurements | None DEFAULT: None

noise

A noise model to use.

TYPE: NoiseHandler | None DEFAULT: None

configuration

optional configuration for the backend

TYPE: BackendConfiguration | dict | None DEFAULT: None

inputs

List that indicates the order of variables of the tensors that are passed to the model. Given input tensors xs = torch.rand(batch_size, input_size:=2) a QNN with inputs=["t", "x"] will assign t, x = xs[:,0], xs[:,1].

TYPE: list[Basic | str] | None DEFAULT: None

input_diff_mode

The differentiation mode for the input tensor.

TYPE: InputDiffMode | str DEFAULT: AD

Source code in qadence/ml_tools/models.py
def __init__(
    self,
    circuit: QuantumCircuit,
    observable: list[AbstractBlock] | AbstractBlock,
    backend: BackendName = BackendName.PYQTORCH,
    diff_mode: DiffMode = DiffMode.AD,
    measurement: Measurements | None = None,
    noise: NoiseHandler | None = None,
    configuration: BackendConfiguration | dict | None = None,
    inputs: list[sympy.Basic | str] | None = None,
    input_diff_mode: InputDiffMode | str = InputDiffMode.AD,
):
    """Initialize the QNN.

    The number of inputs is determined by the feature parameters in the input
    quantum circuit while the number of outputs is determined by how many
    observables are provided as input

    Args:
        circuit: The quantum circuit to use for the QNN.
        observable: The observable.
        backend: The chosen quantum backend.
        diff_mode: The differentiation engine to use. Choices 'gpsr' or 'ad'.
        measurement: optional measurement protocol. If None,
            use exact expectation value with a statevector simulator
        noise: A noise model to use.
        configuration: optional configuration for the backend
        inputs: List that indicates the order of variables of the tensors that are passed
            to the model. Given input tensors `xs = torch.rand(batch_size, input_size:=2)` a QNN
            with `inputs=["t", "x"]` will assign `t, x = xs[:,0], xs[:,1]`.
        input_diff_mode: The differentiation mode for the input tensor.
    """
    super().__init__(
        circuit,
        observable=observable,
        backend=backend,
        diff_mode=diff_mode,
        measurement=measurement,
        configuration=configuration,
        noise=noise,
    )
    if self._observable is None:
        raise ValueError("You need to provide at least one observable in the QNN constructor")
    if (inputs is not None) and (len(self.inputs) == len(inputs)):
        self.inputs = [sympy.symbols(x) if isinstance(x, str) else x for x in inputs]  # type: ignore[union-attr]
    elif (inputs is None) and len(self.inputs) <= 1:
        self.inputs = [sympy.symbols(x) if isinstance(x, str) else x for x in self.inputs]  # type: ignore[union-attr]
    else:
        raise ValueError(
            """
            Your QNN has more than one input. Please provide a list of inputs in the order of
            your tensor domain. For example, if you want to pass
            `xs = torch.rand(batch_size, input_size:=3)` to you QNN, where
            ```
            t = x[:,0]
            x = x[:,1]
            y = x[:,2]
            ```
            you have to specify
            ```
            QNN(circuit, observable, inputs=["t", "x", "y"])
            ```
            You can also pass a list of sympy symbols.
        """
        )
    self.format_to_dict = format_to_dict_fn(self.inputs)  # type: ignore[arg-type]
    self.input_diff_mode = InputDiffMode(input_diff_mode)
    if self.input_diff_mode == InputDiffMode.FD:
        from qadence.backends.utils import finitediff

        self.__derivative = finitediff
    elif self.input_diff_mode == InputDiffMode.AD:
        self.__derivative = _torch_derivative  # type: ignore[assignment]
    else:
        raise ValueError(f"Unkown forward diff mode: {self.input_diff_mode}")

forward(values=None, state=None, measurement=None, noise=None, endianness=Endianness.BIG)

Forward pass of the model.

This returns the (differentiable) expectation value of the given observable operator defined in the constructor. Differently from the base QuantumModel class, the QNN accepts also a tensor as input for the forward pass. The tensor is expected to have shape: n_batches x in_features where n_batches is the number of data points and in_features is the dimensionality of the problem

The output of the forward pass is the expectation value of the input observable(s). If a single observable is given, the output shape is n_batches while if multiple observables are given the output shape is instead n_batches x n_observables

PARAMETER DESCRIPTION
values

the values of the feature parameters

TYPE: dict[str, Tensor] | Tensor DEFAULT: None

state

Initial state.

TYPE: Tensor | None DEFAULT: None

measurement

optional measurement protocol. If None, use exact expectation value with a statevector simulator

TYPE: Measurements | None DEFAULT: None

noise

A noise model to use.

TYPE: NoiseHandler | None DEFAULT: None

endianness

Endianness of the resulting bit strings.

TYPE: Endianness DEFAULT: BIG

RETURNS DESCRIPTION
Tensor

a tensor with the expectation value of the observables passed in the constructor of the model

TYPE: Tensor

Source code in qadence/ml_tools/models.py
def forward(
    self,
    values: dict[str, Tensor] | Tensor = None,
    state: Tensor | None = None,
    measurement: Measurements | None = None,
    noise: NoiseHandler | None = None,
    endianness: Endianness = Endianness.BIG,
) -> Tensor:
    """Forward pass of the model.

    This returns the (differentiable) expectation value of the given observable
    operator defined in the constructor. Differently from the base QuantumModel
    class, the QNN accepts also a tensor as input for the forward pass. The
    tensor is expected to have shape: `n_batches x in_features` where `n_batches`
    is the number of data points and `in_features` is the dimensionality of the problem

    The output of the forward pass is the expectation value of the input
    observable(s). If a single observable is given, the output shape is
    `n_batches` while if multiple observables are given the output shape
    is instead `n_batches x n_observables`

    Args:
        values: the values of the feature parameters
        state: Initial state.
        measurement: optional measurement protocol. If None,
            use exact expectation value with a statevector simulator
        noise: A noise model to use.
        endianness: Endianness of the resulting bit strings.

    Returns:
        Tensor: a tensor with the expectation value of the observables passed
            in the constructor of the model
    """
    return self.expectation(
        values, state=state, measurement=measurement, noise=noise, endianness=endianness
    )

from_configs(register, obs_config, fm_config=FeatureMapConfig(), ansatz_config=AnsatzConfig(), backend=BackendName.PYQTORCH, diff_mode=DiffMode.AD, measurement=None, noise=None, configuration=None, input_diff_mode=InputDiffMode.AD) classmethod

Create a QNN from a set of configurations.

PARAMETER DESCRIPTION
register

The number of qubits or a register object.

TYPE: int | Register

obs_config

The configuration(s) for the observable(s).

TYPE: list[ObservableConfig] | ObservableConfig

fm_config

The configuration for the feature map. Defaults to no feature encoding block.

TYPE: FeatureMapConfig DEFAULT: FeatureMapConfig()

ansatz_config

The configuration for the ansatz. Defaults to a single layer of hardware efficient ansatz.

TYPE: AnsatzConfig DEFAULT: AnsatzConfig()

backend

The chosen quantum backend.

TYPE: BackendName DEFAULT: PYQTORCH

diff_mode

The differentiation engine to use. Choices are 'gpsr' or 'ad'.

TYPE: DiffMode DEFAULT: AD

measurement

Optional measurement protocol. If None, use exact expectation value with a statevector simulator.

TYPE: Measurements DEFAULT: None

noise

A noise model to use.

TYPE: Noise DEFAULT: None

configuration

Optional backend configuration.

TYPE: BackendConfiguration | dict DEFAULT: None

input_diff_mode

The differentiation mode for the input tensor.

TYPE: InputDiffMode DEFAULT: AD

RETURNS DESCRIPTION
QNN

A QNN object.

RAISES DESCRIPTION
ValueError

If the observable configuration is not provided.

Example:

import torch
from qadence.ml_tools.config import AnsatzConfig, FeatureMapConfig
from qadence.ml_tools import QNN
from qadence.constructors import ObservableConfig
from qadence.operations import Z
from qadence.types import (
    AnsatzType, BackendName, BasisSet, ObservableTransform, ReuploadScaling, Strategy
)

register = 4
obs_config = ObservableConfig(
    detuning=Z,
    scale=5.0,
    shift=0.0,
    transformation_type=ObservableTransform.SCALE,
    trainable_transform=None,
)
fm_config = FeatureMapConfig(
    num_features=2,
    inputs=["x", "y"],
    basis_set=BasisSet.FOURIER,
    reupload_scaling=ReuploadScaling.CONSTANT,
    feature_range={
        "x": (-1.0, 1.0),
        "y": (0.0, 1.0),
    },
)
ansatz_config = AnsatzConfig(
    depth=2,
    ansatz_type=AnsatzType.HEA,
    ansatz_strategy=Strategy.DIGITAL,
)

qnn = QNN.from_configs(
    register, obs_config, fm_config, ansatz_config, backend=BackendName.PYQTORCH
)

x = torch.rand(2, 2)
y = qnn(x)
tensor([[2.6101],
        [4.7983]], grad_fn=<CatBackward0>)

Source code in qadence/ml_tools/models.py
@classmethod
def from_configs(
    cls,
    register: int | Register,
    obs_config: Any,
    fm_config: Any = FeatureMapConfig(),
    ansatz_config: Any = AnsatzConfig(),
    backend: BackendName = BackendName.PYQTORCH,
    diff_mode: DiffMode = DiffMode.AD,
    measurement: Measurements | None = None,
    noise: NoiseHandler | None = None,
    configuration: BackendConfiguration | dict | None = None,
    input_diff_mode: InputDiffMode | str = InputDiffMode.AD,
) -> QNN:
    """Create a QNN from a set of configurations.

    Args:
        register (int | Register): The number of qubits or a register object.
        obs_config (list[ObservableConfig] | ObservableConfig): The configuration(s)
            for the observable(s).
        fm_config (FeatureMapConfig): The configuration for the feature map.
            Defaults to no feature encoding block.
        ansatz_config (AnsatzConfig): The configuration for the ansatz.
            Defaults to a single layer of hardware efficient ansatz.
        backend (BackendName): The chosen quantum backend.
        diff_mode (DiffMode): The differentiation engine to use. Choices are
            'gpsr' or 'ad'.
        measurement (Measurements): Optional measurement protocol. If None,
            use exact expectation value with a statevector simulator.
        noise (Noise): A noise model to use.
        configuration (BackendConfiguration | dict): Optional backend configuration.
        input_diff_mode (InputDiffMode): The differentiation mode for the input tensor.

    Returns:
        A QNN object.

    Raises:
        ValueError: If the observable configuration is not provided.

    Example:
    ```python exec="on" source="material-block" result="json"
    import torch
    from qadence.ml_tools.config import AnsatzConfig, FeatureMapConfig
    from qadence.ml_tools import QNN
    from qadence.constructors import ObservableConfig
    from qadence.operations import Z
    from qadence.types import (
        AnsatzType, BackendName, BasisSet, ObservableTransform, ReuploadScaling, Strategy
    )

    register = 4
    obs_config = ObservableConfig(
        detuning=Z,
        scale=5.0,
        shift=0.0,
        transformation_type=ObservableTransform.SCALE,
        trainable_transform=None,
    )
    fm_config = FeatureMapConfig(
        num_features=2,
        inputs=["x", "y"],
        basis_set=BasisSet.FOURIER,
        reupload_scaling=ReuploadScaling.CONSTANT,
        feature_range={
            "x": (-1.0, 1.0),
            "y": (0.0, 1.0),
        },
    )
    ansatz_config = AnsatzConfig(
        depth=2,
        ansatz_type=AnsatzType.HEA,
        ansatz_strategy=Strategy.DIGITAL,
    )

    qnn = QNN.from_configs(
        register, obs_config, fm_config, ansatz_config, backend=BackendName.PYQTORCH
    )

    x = torch.rand(2, 2)
    y = qnn(x)
    print(str(y)) # markdown-exec: hide
    ```
    """
    from .constructors import build_qnn_from_configs

    return build_qnn_from_configs(
        register=register,
        observable_config=obs_config,
        fm_config=fm_config,
        ansatz_config=ansatz_config,
        backend=backend,
        diff_mode=diff_mode,
        measurement=measurement,
        noise=noise,
        configuration=configuration,
        input_diff_mode=input_diff_mode,
    )

derivative(ufa, x, derivative_indices)

Compute derivatives w.r.t.

inputs of a UFA with a single output. The derivative_indices specify which derivative(s) are computed. E.g. derivative_indices=(1,2) would compute the a second order derivative w.r.t to the indices 1 and 2 of the input tensor.

PARAMETER DESCRIPTION
ufa

The model for which we want to compute the derivative.

TYPE: Module

x

(batch_size, input_size) input tensor.

TYPE: Tensor

derivative_indices

Define which derivatives to compute.

TYPE: tuple

Examples: If we create a UFA with three inputs and denote the first, second, and third input with x, y, and z we can compute the following derivatives w.r.t to those inputs:

import torch
from qadence.ml_tools.models import derivative, QNN
from qadence.ml_tools.config import FeatureMapConfig, AnsatzConfig
from qadence.constructors.hamiltonians import ObservableConfig
from qadence.operations import Z

fm_config = FeatureMapConfig(num_features=3, inputs=["x", "y", "z"])
ansatz_config = AnsatzConfig()
obs_config = ObservableConfig(detuning=Z)

f = QNN.from_configs(
    register=3, obs_config=obs_config, fm_config=fm_config, ansatz_config=ansatz_config,
)
inputs = torch.rand(5,3,requires_grad=True)

# df_dx
derivative(f, inputs, (0,))

# d2f_dydz
derivative(f, inputs, (1,2))

# d3fdy2dx
derivative(f, inputs, (1,1,0))

Source code in qadence/ml_tools/models.py
def derivative(ufa: torch.nn.Module, x: Tensor, derivative_indices: tuple[int, ...]) -> Tensor:
    """Compute derivatives w.r.t.

    inputs of a UFA with a single output. The
    `derivative_indices` specify which derivative(s) are computed.  E.g.
    `derivative_indices=(1,2)` would compute the a second order derivative w.r.t
    to the indices `1` and `2` of the input tensor.

    Arguments:
        ufa: The model for which we want to compute the derivative.
        x (Tensor): (batch_size, input_size) input tensor.
        derivative_indices (tuple): Define which derivatives to compute.

    Examples:
    If we create a UFA with three inputs and denote the first, second, and third
    input with `x`, `y`, and `z` we can compute the following derivatives w.r.t
    to those inputs:
    ```py exec="on" source="material-block"
    import torch
    from qadence.ml_tools.models import derivative, QNN
    from qadence.ml_tools.config import FeatureMapConfig, AnsatzConfig
    from qadence.constructors.hamiltonians import ObservableConfig
    from qadence.operations import Z

    fm_config = FeatureMapConfig(num_features=3, inputs=["x", "y", "z"])
    ansatz_config = AnsatzConfig()
    obs_config = ObservableConfig(detuning=Z)

    f = QNN.from_configs(
        register=3, obs_config=obs_config, fm_config=fm_config, ansatz_config=ansatz_config,
    )
    inputs = torch.rand(5,3,requires_grad=True)

    # df_dx
    derivative(f, inputs, (0,))

    # d2f_dydz
    derivative(f, inputs, (1,2))

    # d3fdy2dx
    derivative(f, inputs, (1,1,0))
    ```
    """
    assert ufa.out_features == 1, "Can only call `derivative` on models with 1D output."
    return ufa._derivative(x, derivative_indices)

format_to_dict_fn(inputs=[])

Format an input tensor into the format required by the forward pass.

The tensor is assumed to have dimensions: n_batches x in_features where in_features corresponds to the number of input features of the QNN

Source code in qadence/ml_tools/models.py
def format_to_dict_fn(
    inputs: list[sympy.Symbol | str] = [],
) -> Callable[[Tensor | ParamDictType], ParamDictType]:
    """Format an input tensor into the format required by the forward pass.

    The tensor is assumed to have dimensions: n_batches x in_features where in_features
    corresponds to the number of input features of the QNN
    """
    in_features = len(inputs)

    def tensor_to_dict(values: Tensor | ParamDictType) -> ParamDictType:
        if isinstance(values, Tensor):
            values = values.reshape(-1, 1) if len(values.size()) == 1 else values
            if not values.shape[1] == in_features:
                raise ValueError(
                    f"Model expects in_features={in_features} but got {values.shape[1]}."
                )
            values = {fparam.name: values[:, inputs.index(fparam)] for fparam in inputs}  # type: ignore[union-attr]
        return values

    return tensor_to_dict

Callback(on='idle', called_every=1, callback=None, callback_condition=None, modify_optimize_result=None)

Base class for defining various training callbacks.

ATTRIBUTE DESCRIPTION
on

The event on which to trigger the callback. Must be a valid on value from: ["train_start", "train_end", "train_epoch_start", "train_epoch_end", "train_batch_start", "train_batch_end","val_epoch_start", "val_epoch_end", "val_batch_start", "val_batch_end", "test_batch_start", "test_batch_end"]

TYPE: str

called_every

Frequency of callback calls in terms of iterations.

TYPE: int

callback

The function to call if the condition is met.

TYPE: CallbackFunction | None

callback_condition

Condition to check before calling.

TYPE: CallbackConditionFunction | None

modify_optimize_result

Function to modify OptimizeResult.

TYPE: CallbackFunction | dict[str, Any] | None

A callback can be defined in two ways:

  1. By providing a callback function directly in the base class: This is useful for simple callbacks that don't require subclassing.

Example:

from qadence.ml_tools.callbacks import Callback

def custom_callback_function(trainer, config, writer):
    print("Custom callback executed.")

custom_callback = Callback(
    on="train_end",
    called_every=5,
    callback=custom_callback_function
)

  1. By inheriting and implementing the run_callback method: This is suitable for more complex callbacks that require customization.

Example:

from qadence.ml_tools.callbacks import Callback
class CustomCallback(Callback):
    def run_callback(self, trainer, config, writer):
        print("Custom behavior in the inherited run_callback method.")

custom_callback = CustomCallback(on="train_end", called_every=10)

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(
    self,
    on: str | TrainingStage = "idle",
    called_every: int = 1,
    callback: CallbackFunction | None = None,
    callback_condition: CallbackConditionFunction | None = None,
    modify_optimize_result: CallbackFunction | dict[str, Any] | None = None,
):
    if not isinstance(called_every, int):
        raise ValueError("called_every must be a positive integer or 0")

    self.callback: CallbackFunction | None = callback
    self.on: str | TrainingStage = on
    self.called_every: int = called_every
    self.callback_condition = callback_condition or (lambda _: True)

    if isinstance(modify_optimize_result, dict):
        self.modify_optimize_result = (
            lambda opt_res: opt_res.extra.update(modify_optimize_result) or opt_res
        )
    else:
        self.modify_optimize_result = modify_optimize_result or (lambda opt_res: opt_res)

on: TrainingStage | str property writable

Returns the TrainingStage.

RETURNS DESCRIPTION
TrainingStage

TrainingStage for the callback

TYPE: TrainingStage | str

__call__(when, trainer, config, writer)

Executes the callback if conditions are met.

PARAMETER DESCRIPTION
when

The event when the callback is triggered.

TYPE: str

trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

RETURNS DESCRIPTION
Any

Result of the callback function if executed.

TYPE: Any

Source code in qadence/ml_tools/callbacks/callback.py
def __call__(
    self, when: TrainingStage, trainer: Any, config: TrainConfig, writer: BaseWriter
) -> Any:
    """Executes the callback if conditions are met.

    Args:
        when (str): The event when the callback is triggered.
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter ): The writer object for logging.

    Returns:
        Any: Result of the callback function if executed.
    """
    opt_result = trainer.opt_result
    if self.on == when:
        if opt_result:
            opt_result = self.modify_optimize_result(opt_result)
        if self._should_call(when, opt_result):
            return self.run_callback(trainer, config, writer)

run_callback(trainer, config, writer)

Executes the defined callback.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

RETURNS DESCRIPTION
Any

Result of the callback execution.

TYPE: Any

RAISES DESCRIPTION
NotImplementedError

If not implemented in subclasses.

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> Any:
    """Executes the defined callback.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter ): The writer object for logging.

    Returns:
        Any: Result of the callback execution.

    Raises:
        NotImplementedError: If not implemented in subclasses.
    """
    if self.callback is not None:
        return self.callback(trainer, config, writer)
    raise NotImplementedError("Subclasses should override the run_callback method.")

EarlyStopping(on, called_every, monitor, patience=5, mode='min')

Bases: Callback

Stops training when a monitored metric has not improved for a specified number of epochs.

This callback monitors a specified metric (e.g., validation loss or accuracy). If the metric does not improve for a given patience period, training is stopped.

Example Usage in TrainConfig: To use EarlyStopping, include it in the callbacks list when setting up your TrainConfig:

from qadence.ml_tools import TrainConfig
from qadence.ml_tools.callbacks import EarlyStopping

# Create an instance of the EarlyStopping callback
early_stopping = EarlyStopping(on="val_epoch_end",
                               called_every=1,
                               monitor="val_loss",
                               patience=5,
                               mode="min")

config = TrainConfig(
    max_iter=10000,
    print_every=1000,
    callbacks=[early_stopping]
)

Initializes the EarlyStopping callback.

PARAMETER DESCRIPTION
on

The event to trigger the callback (e.g., "val_epoch_end").

TYPE: str

called_every

Frequency of callback calls in terms of iterations.

TYPE: int

monitor

The metric to monitor (e.g., "val_loss" or "train_loss"). All metrics returned by optimize step are available to monitor. Please add "val_" and "train_" strings at the start of the metric name.

TYPE: str

patience

Number of iterations to wait for improvement. Default is 5.

TYPE: int DEFAULT: 5

mode

Whether to minimize ("min") or maximize ("max") the metric. Default is "min".

TYPE: str DEFAULT: 'min'

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(
    self, on: str, called_every: int, monitor: str, patience: int = 5, mode: str = "min"
):
    """Initializes the EarlyStopping callback.

    Args:
        on (str): The event to trigger the callback (e.g., "val_epoch_end").
        called_every (int): Frequency of callback calls in terms of iterations.
        monitor (str): The metric to monitor (e.g., "val_loss" or "train_loss").
            All metrics returned by optimize step are available to monitor.
            Please add "val_" and "train_" strings at the start of the metric name.
        patience (int, optional): Number of iterations to wait for improvement. Default is 5.
        mode (str, optional): Whether to minimize ("min") or maximize ("max") the metric.
            Default is "min".
    """
    super().__init__(on=on, called_every=called_every)
    self.monitor = monitor
    self.patience = patience
    self.mode = mode
    self.best_value = float("inf") if mode == "min" else -float("inf")
    self.counter = 0

run_callback(trainer, config, writer)

Monitors the metric and stops training if no improvement is observed.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> None:
    """
    Monitors the metric and stops training if no improvement is observed.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter): The writer object for logging.
    """
    current_value = trainer.opt_result.metrics.get(self.monitor)
    if current_value is None:
        raise ValueError(f"Metric '{self.monitor}' is not available in the trainer's metrics.")

    if (self.mode == "min" and current_value < self.best_value) or (
        self.mode == "max" and current_value > self.best_value
    ):
        self.best_value = current_value
        self.counter = 0
    else:
        self.counter += 1

    if self.counter >= self.patience:
        logger.info(
            f"EarlyStopping: No improvement in '{self.monitor}' for {self.patience} epochs. "
            "Stopping training."
        )
        trainer.stop_training = True

GradientMonitoring(on, called_every=1)

Bases: Callback

Logs gradient statistics (e.g., mean, standard deviation, max) during training.

This callback monitors and logs statistics about the gradients of the model parameters to help debug or optimize the training process.

Example Usage in TrainConfig: To use GradientMonitoring, include it in the callbacks list when setting up your TrainConfig:

from qadence.ml_tools import TrainConfig
from qadence.ml_tools.callbacks import GradientMonitoring

# Create an instance of the GradientMonitoring callback
gradient_monitoring = GradientMonitoring(on="train_batch_end", called_every=10)

config = TrainConfig(
    max_iter=10000,
    print_every=1000,
    callbacks=[gradient_monitoring]
)

Initializes the GradientMonitoring callback.

PARAMETER DESCRIPTION
on

The event to trigger the callback (e.g., "train_batch_end").

TYPE: str

called_every

Frequency of callback calls in terms of iterations.

TYPE: int DEFAULT: 1

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(self, on: str, called_every: int = 1):
    """Initializes the GradientMonitoring callback.

    Args:
        on (str): The event to trigger the callback (e.g., "train_batch_end").
        called_every (int): Frequency of callback calls in terms of iterations.
    """
    super().__init__(on=on, called_every=called_every)

run_callback(trainer, config, writer)

Logs gradient statistics.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> None:
    """
    Logs gradient statistics.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter): The writer object for logging.
    """
    gradient_stats = {}
    for name, param in trainer.model.named_parameters():
        if param.grad is not None:
            grad = param.grad
            gradient_stats.update(
                {
                    name + "_mean": grad.mean().item(),
                    name + "_std": grad.std().item(),
                    name + "_max": grad.max().item(),
                    name + "_min": grad.min().item(),
                }
            )

    writer.write(trainer.opt_result.iteration, gradient_stats)

LRSchedulerCosineAnnealing(on, called_every, t_max, min_lr=0.0)

Bases: Callback

Applies cosine annealing to the learning rate during training.

This callback decreases the learning rate following a cosine curve, starting from the initial learning rate and annealing to a minimum (min_lr).

Example Usage in TrainConfig: To use LRSchedulerCosineAnnealing, include it in the callbacks list when setting up your TrainConfig:

from qadence.ml_tools import TrainConfig
from qadence.ml_tools.callbacks import LRSchedulerCosineAnnealing

# Create an instance of the LRSchedulerCosineAnnealing callback
lr_cosine = LRSchedulerCosineAnnealing(on="train_batch_end",
                                       called_every=1,
                                       t_max=5000,
                                       min_lr=1e-6)

config = TrainConfig(
    max_iter=10000,
    # Print metrics every 1000 training epochs
    print_every=1000,
    # Add the custom callback
    callbacks=[lr_cosine]
)

Initializes the LRSchedulerCosineAnnealing callback.

PARAMETER DESCRIPTION
on

The event to trigger the callback.

TYPE: str

called_every

Frequency of callback calls in terms of iterations.

TYPE: int

t_max

The total number of iterations for one annealing cycle.

TYPE: int

min_lr

The minimum learning rate. Default is 0.0.

TYPE: float DEFAULT: 0.0

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(self, on: str, called_every: int, t_max: int, min_lr: float = 0.0):
    """Initializes the LRSchedulerCosineAnnealing callback.

    Args:
        on (str): The event to trigger the callback.
        called_every (int): Frequency of callback calls in terms of iterations.
        t_max (int): The total number of iterations for one annealing cycle.
        min_lr (float, optional): The minimum learning rate. Default is 0.0.
    """
    super().__init__(on=on, called_every=called_every)
    self.t_max = t_max
    self.min_lr = min_lr

run_callback(trainer, config, writer)

Adjusts the learning rate using cosine annealing.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> None:
    """
    Adjusts the learning rate using cosine annealing.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter): The writer object for logging.
    """
    for param_group in trainer.optimizer.param_groups:
        max_lr = param_group["lr"]
        new_lr = (
            self.min_lr
            + (max_lr - self.min_lr)
            * (1 + math.cos(math.pi * trainer.opt_result.iteration / self.t_max))
            / 2
        )
        param_group["lr"] = new_lr

LRSchedulerCyclic(on, called_every, base_lr, max_lr, step_size)

Bases: Callback

Applies a cyclic learning rate schedule during training.

This callback oscillates the learning rate between a minimum (base_lr) and a maximum (max_lr) over a defined cycle length (step_size). The learning rate follows a triangular wave pattern.

Example Usage in TrainConfig: To use LRSchedulerCyclic, include it in the callbacks list when setting up your TrainConfig:

from qadence.ml_tools import TrainConfig
from qadence.ml_tools.callbacks import LRSchedulerCyclic

# Create an instance of the LRSchedulerCyclic callback
lr_cyclic = LRSchedulerCyclic(on="train_batch_end",
                              called_every=1,
                              base_lr=0.001,
                              max_lr=0.01,
                              step_size=2000)

config = TrainConfig(
    max_iter=10000,
    # Print metrics every 1000 training epochs
    print_every=1000,
    # Add the custom callback
    callbacks=[lr_cyclic]
)

Initializes the LRSchedulerCyclic callback.

PARAMETER DESCRIPTION
on

The event to trigger the callback.

TYPE: str

called_every

Frequency of callback calls in terms of iterations.

TYPE: int

base_lr

The minimum learning rate.

TYPE: float

max_lr

The maximum learning rate.

TYPE: float

step_size

Number of iterations for half a cycle.

TYPE: int

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(self, on: str, called_every: int, base_lr: float, max_lr: float, step_size: int):
    """Initializes the LRSchedulerCyclic callback.

    Args:
        on (str): The event to trigger the callback.
        called_every (int): Frequency of callback calls in terms of iterations.
        base_lr (float): The minimum learning rate.
        max_lr (float): The maximum learning rate.
        step_size (int): Number of iterations for half a cycle.
    """
    super().__init__(on=on, called_every=called_every)
    self.base_lr = base_lr
    self.max_lr = max_lr
    self.step_size = step_size

run_callback(trainer, config, writer)

Adjusts the learning rate cyclically.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> None:
    """
    Adjusts the learning rate cyclically.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter): The writer object for logging.
    """
    cycle = trainer.opt_result.iteration // (2 * self.step_size)
    x = abs(trainer.opt_result.iteration / self.step_size - 2 * cycle - 1)
    scale = max(0, (1 - x))
    new_lr = self.base_lr + (self.max_lr - self.base_lr) * scale
    for param_group in trainer.optimizer.param_groups:
        param_group["lr"] = new_lr

LRSchedulerStepDecay(on, called_every, gamma=0.5)

Bases: Callback

Reduces the learning rate by a factor at regular intervals.

This callback adjusts the learning rate by multiplying it with a decay factor after a specified number of iterations. The learning rate is updated as: lr = lr * gamma

Example Usage in TrainConfig: To use LRSchedulerStepDecay, include it in the callbacks list when setting up your TrainConfig:

from qadence.ml_tools import TrainConfig
from qadence.ml_tools.callbacks import LRSchedulerStepDecay

# Create an instance of the LRSchedulerStepDecay callback
lr_step_decay = LRSchedulerStepDecay(on="train_epoch_end",
                                     called_every=100,
                                     gamma=0.5)

config = TrainConfig(
    max_iter=10000,
    # Print metrics every 1000 training epochs
    print_every=1000,
    # Add the custom callback
    callbacks=[lr_step_decay]
)

Initializes the LRSchedulerStepDecay callback.

PARAMETER DESCRIPTION
on

The event to trigger the callback.

TYPE: str

called_every

Frequency of callback calls in terms of iterations.

TYPE: int

gamma

The decay factor applied to the learning rate. A value < 1 reduces the learning rate over time. Default is 0.5.

TYPE: float DEFAULT: 0.5

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(self, on: str, called_every: int, gamma: float = 0.5):
    """Initializes the LRSchedulerStepDecay callback.

    Args:
        on (str): The event to trigger the callback.
        called_every (int): Frequency of callback calls in terms of iterations.
        gamma (float, optional): The decay factor applied to the learning rate.
            A value < 1 reduces the learning rate over time. Default is 0.5.
    """
    super().__init__(on=on, called_every=called_every)
    self.gamma = gamma

run_callback(trainer, config, writer)

Runs the callback to apply step decay to the learning rate.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> None:
    """
    Runs the callback to apply step decay to the learning rate.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter): The writer object for logging.
    """
    for param_group in trainer.optimizer.param_groups:
        param_group["lr"] *= self.gamma

LoadCheckpoint(on='idle', called_every=1, callback=None, callback_condition=None, modify_optimize_result=None)

Bases: Callback

Callback to load a model checkpoint.

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(
    self,
    on: str | TrainingStage = "idle",
    called_every: int = 1,
    callback: CallbackFunction | None = None,
    callback_condition: CallbackConditionFunction | None = None,
    modify_optimize_result: CallbackFunction | dict[str, Any] | None = None,
):
    if not isinstance(called_every, int):
        raise ValueError("called_every must be a positive integer or 0")

    self.callback: CallbackFunction | None = callback
    self.on: str | TrainingStage = on
    self.called_every: int = called_every
    self.callback_condition = callback_condition or (lambda _: True)

    if isinstance(modify_optimize_result, dict):
        self.modify_optimize_result = (
            lambda opt_res: opt_res.extra.update(modify_optimize_result) or opt_res
        )
    else:
        self.modify_optimize_result = modify_optimize_result or (lambda opt_res: opt_res)

run_callback(trainer, config, writer)

Loads a model checkpoint.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

RETURNS DESCRIPTION
Any

The result of loading the checkpoint.

TYPE: Any

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> Any:
    """Loads a model checkpoint.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter ): The writer object for logging.

    Returns:
        Any: The result of loading the checkpoint.
    """
    folder = config.log_folder
    model = trainer.model
    optimizer = trainer.optimizer
    device = trainer.log_device
    return load_checkpoint(folder, model, optimizer, device=device)

LogHyperparameters(on='idle', called_every=1, callback=None, callback_condition=None, modify_optimize_result=None)

Bases: Callback

Callback to log hyperparameters using the writer.

The LogHyperparameters callback can be added to the TrainConfig callbacks as a custom user defined callback.

Example Usage in TrainConfig: To use LogHyperparameters, include it in the callbacks list when setting up your TrainConfig:

from qadence.ml_tools import TrainConfig
from qadence.ml_tools.callbacks import LogHyperparameters

# Create an instance of the LogHyperparameters callback
log_hyper_callback = LogHyperparameters(on = "val_batch_end", called_every = 100)

config = TrainConfig(
    max_iter=10000,
    # Print metrics every 1000 training epochs
    print_every=1000,
    # Add the custom callback that runs every 100 val_batch_end
    callbacks=[log_hyper_callback]
)

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(
    self,
    on: str | TrainingStage = "idle",
    called_every: int = 1,
    callback: CallbackFunction | None = None,
    callback_condition: CallbackConditionFunction | None = None,
    modify_optimize_result: CallbackFunction | dict[str, Any] | None = None,
):
    if not isinstance(called_every, int):
        raise ValueError("called_every must be a positive integer or 0")

    self.callback: CallbackFunction | None = callback
    self.on: str | TrainingStage = on
    self.called_every: int = called_every
    self.callback_condition = callback_condition or (lambda _: True)

    if isinstance(modify_optimize_result, dict):
        self.modify_optimize_result = (
            lambda opt_res: opt_res.extra.update(modify_optimize_result) or opt_res
        )
    else:
        self.modify_optimize_result = modify_optimize_result or (lambda opt_res: opt_res)

run_callback(trainer, config, writer)

Logs hyperparameters using the writer.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> Any:
    """Logs hyperparameters using the writer.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter ): The writer object for logging.
    """
    hyperparams = config.hyperparams
    writer.log_hyperparams(hyperparams)

LogModelTracker(on='idle', called_every=1, callback=None, callback_condition=None, modify_optimize_result=None)

Bases: Callback

Callback to log the model using the writer.

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(
    self,
    on: str | TrainingStage = "idle",
    called_every: int = 1,
    callback: CallbackFunction | None = None,
    callback_condition: CallbackConditionFunction | None = None,
    modify_optimize_result: CallbackFunction | dict[str, Any] | None = None,
):
    if not isinstance(called_every, int):
        raise ValueError("called_every must be a positive integer or 0")

    self.callback: CallbackFunction | None = callback
    self.on: str | TrainingStage = on
    self.called_every: int = called_every
    self.callback_condition = callback_condition or (lambda _: True)

    if isinstance(modify_optimize_result, dict):
        self.modify_optimize_result = (
            lambda opt_res: opt_res.extra.update(modify_optimize_result) or opt_res
        )
    else:
        self.modify_optimize_result = modify_optimize_result or (lambda opt_res: opt_res)

run_callback(trainer, config, writer)

Logs the model using the writer.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> Any:
    """Logs the model using the writer.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter ): The writer object for logging.
    """
    model = trainer.model
    writer.log_model(
        model, trainer.train_dataloader, trainer.val_dataloader, trainer.test_dataloader
    )

PlotMetrics(on='idle', called_every=1, callback=None, callback_condition=None, modify_optimize_result=None)

Bases: Callback

Callback to plot metrics using the writer.

The PlotMetrics callback can be added to the TrainConfig callbacks as a custom user defined callback.

Example Usage in TrainConfig: To use PlotMetrics, include it in the callbacks list when setting up your TrainConfig:

from qadence.ml_tools import TrainConfig
from qadence.ml_tools.callbacks import PlotMetrics

# Create an instance of the PlotMetrics callback
plot_metrics_callback = PlotMetrics(on = "val_batch_end", called_every = 100)

config = TrainConfig(
    max_iter=10000,
    # Print metrics every 1000 training epochs
    print_every=1000,
    # Add the custom callback that runs every 100 val_batch_end
    callbacks=[plot_metrics_callback]
)

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(
    self,
    on: str | TrainingStage = "idle",
    called_every: int = 1,
    callback: CallbackFunction | None = None,
    callback_condition: CallbackConditionFunction | None = None,
    modify_optimize_result: CallbackFunction | dict[str, Any] | None = None,
):
    if not isinstance(called_every, int):
        raise ValueError("called_every must be a positive integer or 0")

    self.callback: CallbackFunction | None = callback
    self.on: str | TrainingStage = on
    self.called_every: int = called_every
    self.callback_condition = callback_condition or (lambda _: True)

    if isinstance(modify_optimize_result, dict):
        self.modify_optimize_result = (
            lambda opt_res: opt_res.extra.update(modify_optimize_result) or opt_res
        )
    else:
        self.modify_optimize_result = modify_optimize_result or (lambda opt_res: opt_res)

run_callback(trainer, config, writer)

Plots metrics using the writer.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> Any:
    """Plots metrics using the writer.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter ): The writer object for logging.
    """
    opt_result = trainer.opt_result
    plotting_functions = config.plotting_functions
    writer.plot(trainer.model, opt_result.iteration, plotting_functions)

PrintMetrics(on='idle', called_every=1, callback=None, callback_condition=None, modify_optimize_result=None)

Bases: Callback

Callback to print metrics using the writer.

The PrintMetrics callback can be added to the TrainConfig callbacks as a custom user defined callback.

Example Usage in TrainConfig: To use PrintMetrics, include it in the callbacks list when setting up your TrainConfig:

from qadence.ml_tools import TrainConfig
from qadence.ml_tools.callbacks import PrintMetrics

# Create an instance of the PrintMetrics callback
print_metrics_callback = PrintMetrics(on = "val_batch_end", called_every = 100)

config = TrainConfig(
    max_iter=10000,
    # Print metrics every 1000 training epochs
    print_every=1000,
    # Add the custom callback that runs every 100 val_batch_end
    callbacks=[print_metrics_callback]
)

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(
    self,
    on: str | TrainingStage = "idle",
    called_every: int = 1,
    callback: CallbackFunction | None = None,
    callback_condition: CallbackConditionFunction | None = None,
    modify_optimize_result: CallbackFunction | dict[str, Any] | None = None,
):
    if not isinstance(called_every, int):
        raise ValueError("called_every must be a positive integer or 0")

    self.callback: CallbackFunction | None = callback
    self.on: str | TrainingStage = on
    self.called_every: int = called_every
    self.callback_condition = callback_condition or (lambda _: True)

    if isinstance(modify_optimize_result, dict):
        self.modify_optimize_result = (
            lambda opt_res: opt_res.extra.update(modify_optimize_result) or opt_res
        )
    else:
        self.modify_optimize_result = modify_optimize_result or (lambda opt_res: opt_res)

run_callback(trainer, config, writer)

Prints metrics using the writer.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> Any:
    """Prints metrics using the writer.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter ): The writer object for logging.
    """
    opt_result = trainer.opt_result
    writer.print_metrics(opt_result)

SaveBestCheckpoint(on, called_every)

Bases: SaveCheckpoint

Callback to save the best model checkpoint based on a validation criterion.

Initializes the SaveBestCheckpoint callback.

PARAMETER DESCRIPTION
on

The event to trigger the callback.

TYPE: str

called_every

Frequency of callback calls in terms of iterations.

TYPE: int

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(self, on: str, called_every: int):
    """Initializes the SaveBestCheckpoint callback.

    Args:
        on (str): The event to trigger the callback.
        called_every (int): Frequency of callback calls in terms of iterations.
    """
    super().__init__(on=on, called_every=called_every)
    self.best_loss = float("inf")

run_callback(trainer, config, writer)

Saves the checkpoint if the current loss is better than the best loss.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> Any:
    """Saves the checkpoint if the current loss is better than the best loss.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter ): The writer object for logging.
    """
    opt_result = trainer.opt_result
    if config.validation_criterion and config.validation_criterion(
        opt_result.loss, self.best_loss, config.val_epsilon
    ):
        self.best_loss = opt_result.loss

        folder = config.log_folder
        model = trainer.model
        optimizer = trainer.optimizer
        opt_result = trainer.opt_result
        write_checkpoint(folder, model, optimizer, "best")

SaveCheckpoint(on='idle', called_every=1, callback=None, callback_condition=None, modify_optimize_result=None)

Bases: Callback

Callback to save a model checkpoint.

The SaveCheckpoint callback can be added to the TrainConfig callbacks as a custom user defined callback.

Example Usage in TrainConfig: To use SaveCheckpoint, include it in the callbacks list when setting up your TrainConfig:

from qadence.ml_tools import TrainConfig
from qadence.ml_tools.callbacks import SaveCheckpoint

# Create an instance of the SaveCheckpoint callback
save_checkpoint_callback = SaveCheckpoint(on = "val_batch_end", called_every = 100)

config = TrainConfig(
    max_iter=10000,
    # Print metrics every 1000 training epochs
    print_every=1000,
    # Add the custom callback that runs every 100 val_batch_end
    callbacks=[save_checkpoint_callback]
)

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(
    self,
    on: str | TrainingStage = "idle",
    called_every: int = 1,
    callback: CallbackFunction | None = None,
    callback_condition: CallbackConditionFunction | None = None,
    modify_optimize_result: CallbackFunction | dict[str, Any] | None = None,
):
    if not isinstance(called_every, int):
        raise ValueError("called_every must be a positive integer or 0")

    self.callback: CallbackFunction | None = callback
    self.on: str | TrainingStage = on
    self.called_every: int = called_every
    self.callback_condition = callback_condition or (lambda _: True)

    if isinstance(modify_optimize_result, dict):
        self.modify_optimize_result = (
            lambda opt_res: opt_res.extra.update(modify_optimize_result) or opt_res
        )
    else:
        self.modify_optimize_result = modify_optimize_result or (lambda opt_res: opt_res)

run_callback(trainer, config, writer)

Saves a model checkpoint.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> Any:
    """Saves a model checkpoint.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter ): The writer object for logging.
    """
    folder = config.log_folder
    model = trainer.model
    optimizer = trainer.optimizer
    opt_result = trainer.opt_result
    write_checkpoint(folder, model, optimizer, opt_result.iteration)

WriteMetrics(on='idle', called_every=1, callback=None, callback_condition=None, modify_optimize_result=None)

Bases: Callback

Callback to write metrics using the writer.

The WriteMetrics callback can be added to the TrainConfig callbacks as a custom user defined callback.

Example Usage in TrainConfig: To use WriteMetrics, include it in the callbacks list when setting up your TrainConfig:

from qadence.ml_tools import TrainConfig
from qadence.ml_tools.callbacks import WriteMetrics

# Create an instance of the WriteMetrics callback
write_metrics_callback = WriteMetrics(on = "val_batch_end", called_every = 100)

config = TrainConfig(
    max_iter=10000,
    # Print metrics every 1000 training epochs
    print_every=1000,
    # Add the custom callback that runs every 100 val_batch_end
    callbacks=[write_metrics_callback]
)

Source code in qadence/ml_tools/callbacks/callback.py
def __init__(
    self,
    on: str | TrainingStage = "idle",
    called_every: int = 1,
    callback: CallbackFunction | None = None,
    callback_condition: CallbackConditionFunction | None = None,
    modify_optimize_result: CallbackFunction | dict[str, Any] | None = None,
):
    if not isinstance(called_every, int):
        raise ValueError("called_every must be a positive integer or 0")

    self.callback: CallbackFunction | None = callback
    self.on: str | TrainingStage = on
    self.called_every: int = called_every
    self.callback_condition = callback_condition or (lambda _: True)

    if isinstance(modify_optimize_result, dict):
        self.modify_optimize_result = (
            lambda opt_res: opt_res.extra.update(modify_optimize_result) or opt_res
        )
    else:
        self.modify_optimize_result = modify_optimize_result or (lambda opt_res: opt_res)

run_callback(trainer, config, writer)

Writes metrics using the writer.

PARAMETER DESCRIPTION
trainer

The training object.

TYPE: Any

config

The configuration object.

TYPE: TrainConfig

writer

The writer object for logging.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/callback.py
def run_callback(self, trainer: Any, config: TrainConfig, writer: BaseWriter) -> Any:
    """Writes metrics using the writer.

    Args:
        trainer (Any): The training object.
        config (TrainConfig): The configuration object.
        writer (BaseWriter ): The writer object for logging.
    """
    opt_result = trainer.opt_result
    writer.write(opt_result.iteration, opt_result.metrics)

BaseTrainer(model, optimizer, config, loss_fn='mse', optimize_step=optimize_step, train_dataloader=None, val_dataloader=None, test_dataloader=None, max_batches=None)

Base class for training machine learning models using a given optimizer.

The base class implements contextmanager for gradient based/free optimization, properties, property setters, input validations, callback decorator generator, and empty hooks for different training steps.

This class provides
  • Context managers for enabling/disabling gradient-based optimization
  • Properties for managing models, optimizers, and dataloaders
  • Input validations and a callback decorator generator
  • Config and callback managers using the provided TrainConfig
ATTRIBUTE DESCRIPTION
use_grad

Indicates if gradients are used for optimization. Default is True.

TYPE: bool

model

The neural network model.

TYPE: Module

optimizer

The optimizer for training.

TYPE: Optimizer | Optimizer | None

config

The configuration settings for training.

TYPE: TrainConfig

train_dataloader

DataLoader for training data.

TYPE: Dataloader | DictDataLoader | None

val_dataloader

DataLoader for validation data.

TYPE: Dataloader | DictDataLoader | None

test_dataloader

DataLoader for testing data.

TYPE: Dataloader | DictDataLoader | None

optimize_step

Function for performing an optimization step.

TYPE: Callable

loss_fn

loss function to use. Default loss function used is 'mse'

TYPE: Callable | str ]

num_training_batches

Number of training batches. In case of InfiniteTensorDataset only 1 batch per epoch is used.

TYPE: int

num_validation_batches

Number of validation batches. In case of InfiniteTensorDataset only 1 batch per epoch is used.

TYPE: int

num_test_batches

Number of test batches. In case of InfiniteTensorDataset only 1 batch per epoch is used.

TYPE: int

state

Current state in the training process

TYPE: str

Initializes the BaseTrainer.

PARAMETER DESCRIPTION
model

The model to train.

TYPE: Module

optimizer

The optimizer for training.

TYPE: Optimizer | Optimizer | None

config

The TrainConfig settings for training.

TYPE: TrainConfig

loss_fn

The loss function to use. str input to be specified to use a default loss function. currently supported loss functions: 'mse', 'cross_entropy'. If not specified, default mse loss will be used.

TYPE: str | Callable DEFAULT: 'mse'

train_dataloader

DataLoader for training data. If the model does not need data to evaluate loss, no dataset should be provided.

TYPE: Dataloader | DictDataLoader | None DEFAULT: None

val_dataloader

DataLoader for validation data.

TYPE: Dataloader | DictDataLoader | None DEFAULT: None

test_dataloader

DataLoader for testing data.

TYPE: Dataloader | DictDataLoader | None DEFAULT: None

max_batches

Maximum number of batches to process per epoch. This is only valid in case of finite TensorDataset dataloaders. if max_batches is not None, the maximum number of batches used will be min(max_batches, len(dataloader.dataset)) In case of InfiniteTensorDataset only 1 batch per epoch is used.

TYPE: int | None DEFAULT: None

Source code in qadence/ml_tools/train_utils/base_trainer.py
def __init__(
    self,
    model: nn.Module,
    optimizer: optim.Optimizer | NGOptimizer | None,
    config: TrainConfig,
    loss_fn: str | Callable = "mse",
    optimize_step: Callable = optimize_step,
    train_dataloader: DataLoader | DictDataLoader | None = None,
    val_dataloader: DataLoader | DictDataLoader | None = None,
    test_dataloader: DataLoader | DictDataLoader | None = None,
    max_batches: int | None = None,
):
    """
    Initializes the BaseTrainer.

    Args:
        model (nn.Module): The model to train.
        optimizer (optim.Optimizer | NGOptimizer | None): The optimizer
            for training.
        config (TrainConfig): The TrainConfig settings for training.
        loss_fn (str | Callable): The loss function to use.
            str input to be specified to use a default loss function.
            currently supported loss functions: 'mse', 'cross_entropy'.
            If not specified, default mse loss will be used.
        train_dataloader (Dataloader | DictDataLoader | None): DataLoader for training data.
            If the model does not need data to evaluate loss, no dataset
            should be provided.
        val_dataloader (Dataloader | DictDataLoader | None): DataLoader for validation data.
        test_dataloader (Dataloader | DictDataLoader | None): DataLoader for testing data.
        max_batches (int | None): Maximum number of batches to process per epoch.
            This is only valid in case of finite TensorDataset dataloaders.
            if max_batches is not None, the maximum number of batches used will
            be min(max_batches, len(dataloader.dataset))
            In case of InfiniteTensorDataset only 1 batch per epoch is used.
    """
    self._model: nn.Module
    self._optimizer: optim.Optimizer | NGOptimizer | None
    self._config: TrainConfig
    self._train_dataloader: DataLoader | DictDataLoader | None = None
    self._val_dataloader: DataLoader | DictDataLoader | None = None
    self._test_dataloader: DataLoader | DictDataLoader | None = None

    self.config = config
    self.model = model
    self.optimizer = optimizer
    self.max_batches = max_batches

    self.num_training_batches: int
    self.num_validation_batches: int
    self.num_test_batches: int

    self.train_dataloader = train_dataloader
    self.val_dataloader = val_dataloader
    self.test_dataloader = test_dataloader

    self.loss_fn: Callable = get_loss_fn(loss_fn)
    self.optimize_step: Callable = optimize_step
    self.ng_params: ng.p.Array
    self.training_stage: TrainingStage = TrainingStage("idle")

config: TrainConfig property writable

Returns the training configuration.

RETURNS DESCRIPTION
TrainConfig

The configuration object.

TYPE: TrainConfig

model: nn.Module property writable

Returns the model if set, otherwise raises an error.

RETURNS DESCRIPTION
Module

nn.Module: The model.

optimizer: optim.Optimizer | NGOptimizer | None property writable

Returns the optimizer if set, otherwise raises an error.

RETURNS DESCRIPTION
Optimizer | Optimizer | None

optim.Optimizer | NGOptimizer | None: The optimizer.

test_dataloader: DataLoader property writable

Returns the test DataLoader, validating its type.

RETURNS DESCRIPTION
DataLoader

The DataLoader for testing data.

TYPE: DataLoader

train_dataloader: DataLoader property writable

Returns the training DataLoader, validating its type.

RETURNS DESCRIPTION
DataLoader

The DataLoader for training data.

TYPE: DataLoader

use_grad: bool property writable

Returns the optimization framework for the trainer.

use_grad = True : Gradient based optimization use_grad = False : Gradient free optimization

RETURNS DESCRIPTION
bool

Bool value for using gradient.

TYPE: bool

val_dataloader: DataLoader property writable

Returns the validation DataLoader, validating its type.

RETURNS DESCRIPTION
DataLoader

The DataLoader for validation data.

TYPE: DataLoader

callback(phase) staticmethod

Decorator for executing callbacks before and after a phase.

Phase are different hooks during the training. list of valid phases is defined in Callbacks. We also update the current state of the training process in the callback decorator.

PARAMETER DESCRIPTION
phase

The phase for which the callback is executed (e.g., "train", "train_epoch", "train_batch").

TYPE: str

RETURNS DESCRIPTION
Callable

The decorated function.

TYPE: Callable

Source code in qadence/ml_tools/train_utils/base_trainer.py
@staticmethod
def callback(phase: str) -> Callable:
    """
    Decorator for executing callbacks before and after a phase.

    Phase are different hooks during the training. list of valid
    phases is defined in Callbacks.
    We also update the current state of the training process in
    the callback decorator.

    Args:
        phase (str): The phase for which the callback is executed (e.g., "train",
            "train_epoch", "train_batch").

    Returns:
        Callable: The decorated function.
    """

    def decorator(method: Callable) -> Callable:
        def wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
            start_event = f"{phase}_start"
            end_event = f"{phase}_end"

            self.training_stage = TrainingStage(start_event)
            self.callback_manager.run_callbacks(trainer=self)
            result = method(self, *args, **kwargs)

            self.training_stage = TrainingStage(end_event)
            # build_optimize_result method is defined in the trainer.
            self.build_optimize_result(result)
            self.callback_manager.run_callbacks(trainer=self)

            return result

        return wrapper

    return decorator

disable_grad_opt(optimizer=None)

Context manager to temporarily disable gradient-based optimization.

PARAMETER DESCRIPTION
optimizer

The Nevergrad optimizer to use. If no optimizer is provided, default optimizer for trainer object will be used.

TYPE: Optimizer DEFAULT: None

Source code in qadence/ml_tools/train_utils/base_trainer.py
@contextmanager
def disable_grad_opt(self, optimizer: NGOptimizer | None = None) -> Iterator[None]:
    """
    Context manager to temporarily disable gradient-based optimization.

    Args:
        optimizer (NGOptimizer): The Nevergrad optimizer to use.
            If no optimizer is provided, default optimizer for trainer
            object will be used.
    """
    original_mode = self.use_grad
    original_optimizer = self._optimizer
    try:
        self.use_grad = False
        self.callback_manager.use_grad = False
        self.optimizer = optimizer if optimizer else self.optimizer
        yield
    finally:
        self.use_grad = original_mode
        self.callback_manager.use_grad = original_mode
        self.optimizer = original_optimizer

enable_grad_opt(optimizer=None)

Context manager to temporarily enable gradient-based optimization.

PARAMETER DESCRIPTION
optimizer

The PyTorch optimizer to use. If no optimizer is provided, default optimizer for trainer object will be used.

TYPE: Optimizer DEFAULT: None

Source code in qadence/ml_tools/train_utils/base_trainer.py
@contextmanager
def enable_grad_opt(self, optimizer: optim.Optimizer | None = None) -> Iterator[None]:
    """
    Context manager to temporarily enable gradient-based optimization.

    Args:
        optimizer (optim.Optimizer): The PyTorch optimizer to use.
            If no optimizer is provided, default optimizer for trainer
            object will be used.
    """
    original_mode = self.use_grad
    original_optimizer = self._optimizer
    try:
        self.use_grad = True
        self.callback_manager.use_grad = True
        self.optimizer = optimizer if optimizer else self.optimizer
        yield
    finally:
        self.use_grad = original_mode
        self.callback_manager.use_grad = original_mode
        self.optimizer = original_optimizer

on_test_batch_end(test_batch_loss_metrics)

Called at the end of each testing batch.

PARAMETER DESCRIPTION
test_batch_loss_metrics

Metrics for the testing batch loss. tuple of (loss, metrics)

TYPE: tuple[Tensor, Any]

Source code in qadence/ml_tools/train_utils/base_trainer.py
def on_test_batch_end(self, test_batch_loss_metrics: tuple[torch.Tensor, Any]) -> None:
    """
    Called at the end of each testing batch.

    Args:
        test_batch_loss_metrics: Metrics for the testing batch loss.
            tuple of (loss, metrics)
    """
    pass

on_test_batch_start(batch)

Called at the start of each testing batch.

PARAMETER DESCRIPTION
batch

A batch of data from the DataLoader. Typically a tuple containing input tensors and corresponding target tensors.

TYPE: tuple[Tensor, ...] | None

Source code in qadence/ml_tools/train_utils/base_trainer.py
def on_test_batch_start(self, batch: tuple[torch.Tensor, ...] | None) -> None:
    """
    Called at the start of each testing batch.

    Args:
        batch: A batch of data from the DataLoader. Typically a tuple containing
            input tensors and corresponding target tensors.
    """
    pass

on_train_batch_end(train_batch_loss_metrics)

Called at the end of each training batch.

PARAMETER DESCRIPTION
train_batch_loss_metrics

Metrics for the training batch loss. tuple of (loss, metrics)

TYPE: tuple[Tensor, Any]

Source code in qadence/ml_tools/train_utils/base_trainer.py
def on_train_batch_end(self, train_batch_loss_metrics: tuple[torch.Tensor, Any]) -> None:
    """
    Called at the end of each training batch.

    Args:
        train_batch_loss_metrics: Metrics for the training batch loss.
            tuple of (loss, metrics)
    """
    pass

on_train_batch_start(batch)

Called at the start of each training batch.

PARAMETER DESCRIPTION
batch

A batch of data from the DataLoader. Typically a tuple containing input tensors and corresponding target tensors.

TYPE: tuple[Tensor, ...] | None

Source code in qadence/ml_tools/train_utils/base_trainer.py
def on_train_batch_start(self, batch: tuple[torch.Tensor, ...] | None) -> None:
    """
    Called at the start of each training batch.

    Args:
        batch: A batch of data from the DataLoader. Typically a tuple containing
            input tensors and corresponding target tensors.
    """
    pass

on_train_end(train_losses, val_losses=None)

Called at the end of training.

PARAMETER DESCRIPTION
train_losses

Metrics for the training losses. list -> list -> tuples Epochs -> Training Batches -> (loss, metrics)

TYPE: list[list[tuple[Tensor, Any]]]

val_losses

Metrics for the validation losses. list -> list -> tuples Epochs -> Validation Batches -> (loss, metrics)

TYPE: list[list[tuple[Tensor, Any]]] | None DEFAULT: None

Source code in qadence/ml_tools/train_utils/base_trainer.py
def on_train_end(
    self,
    train_losses: list[list[tuple[torch.Tensor, Any]]],
    val_losses: list[list[tuple[torch.Tensor, Any]]] | None = None,
) -> None:
    """
    Called at the end of training.

    Args:
        train_losses (list[list[tuple[torch.Tensor, Any]]]):
            Metrics for the training losses.
            list    -> list                  -> tuples
            Epochs  -> Training Batches      -> (loss, metrics)
        val_losses (list[list[tuple[torch.Tensor, Any]]] | None):
            Metrics for the validation losses.
            list    -> list                  -> tuples
            Epochs  -> Validation Batches    -> (loss, metrics)
    """
    pass

on_train_epoch_end(train_epoch_loss_metrics)

Called at the end of each training epoch.

PARAMETER DESCRIPTION
train_epoch_loss_metrics

Metrics for the training epoch losses. list -> tuples Training Batches -> (loss, metrics)

TYPE: list[tuple[Tensor, Any]]

Source code in qadence/ml_tools/train_utils/base_trainer.py
def on_train_epoch_end(self, train_epoch_loss_metrics: list[tuple[torch.Tensor, Any]]) -> None:
    """
    Called at the end of each training epoch.

    Args:
        train_epoch_loss_metrics: Metrics for the training epoch losses.
            list                  -> tuples
            Training Batches      -> (loss, metrics)
    """
    pass

on_train_epoch_start()

Called at the start of each training epoch.

Source code in qadence/ml_tools/train_utils/base_trainer.py
def on_train_epoch_start(self) -> None:
    """Called at the start of each training epoch."""
    pass

on_train_start()

Called at the start of training.

Source code in qadence/ml_tools/train_utils/base_trainer.py
def on_train_start(self) -> None:
    """Called at the start of training."""
    pass

on_val_batch_end(val_batch_loss_metrics)

Called at the end of each validation batch.

PARAMETER DESCRIPTION
val_batch_loss_metrics

Metrics for the validation batch loss. tuple of (loss, metrics)

TYPE: tuple[Tensor, Any]

Source code in qadence/ml_tools/train_utils/base_trainer.py
def on_val_batch_end(self, val_batch_loss_metrics: tuple[torch.Tensor, Any]) -> None:
    """
    Called at the end of each validation batch.

    Args:
        val_batch_loss_metrics: Metrics for the validation batch loss.
            tuple of (loss, metrics)
    """
    pass

on_val_batch_start(batch)

Called at the start of each validation batch.

PARAMETER DESCRIPTION
batch

A batch of data from the DataLoader. Typically a tuple containing input tensors and corresponding target tensors.

TYPE: tuple[Tensor, ...] | None

Source code in qadence/ml_tools/train_utils/base_trainer.py
def on_val_batch_start(self, batch: tuple[torch.Tensor, ...] | None) -> None:
    """
    Called at the start of each validation batch.

    Args:
        batch: A batch of data from the DataLoader. Typically a tuple containing
            input tensors and corresponding target tensors.
    """
    pass

on_val_epoch_end(val_epoch_loss_metrics)

Called at the end of each validation epoch.

PARAMETER DESCRIPTION
val_epoch_loss_metrics

Metrics for the validation epoch loss. list -> tuples Validation Batches -> (loss, metrics)

TYPE: list[tuple[Tensor, Any]]

Source code in qadence/ml_tools/train_utils/base_trainer.py
def on_val_epoch_end(self, val_epoch_loss_metrics: list[tuple[torch.Tensor, Any]]) -> None:
    """
    Called at the end of each validation epoch.

    Args:
        val_epoch_loss_metrics: Metrics for the validation epoch loss.
            list                    -> tuples
            Validation Batches      -> (loss, metrics)
    """
    pass

on_val_epoch_start()

Called at the start of each validation epoch.

Source code in qadence/ml_tools/train_utils/base_trainer.py
def on_val_epoch_start(self) -> None:
    """Called at the start of each validation epoch."""
    pass

set_use_grad(value) classmethod

Sets the global use_grad flag.

PARAMETER DESCRIPTION
value

Whether to use gradient-based optimization.

TYPE: bool

Source code in qadence/ml_tools/train_utils/base_trainer.py
@classmethod
def set_use_grad(cls, value: bool) -> None:
    """
    Sets the global use_grad flag.

    Args:
        value (bool): Whether to use gradient-based optimization.
    """
    if not isinstance(value, bool):
        raise TypeError("use_grad must be a boolean value.")
    cls._use_grad = value

BaseWriter

Bases: ABC

Abstract base class for experiment tracking writers.

METHOD DESCRIPTION
open

Opens the writer and sets up the logging environment.

close

Closes the writer and finalizes any ongoing logging processes.

print_metrics

Prints metrics and loss in a formatted manner.

write

Writes the optimization results to the tracking tool.

log_hyperparams

Logs the hyperparameters to the tracking tool.

plot

Logs model plots using provided plotting functions.

log_model

Logs the model and any relevant information.

close() abstractmethod

Closes the writer and finalizes logging.

Source code in qadence/ml_tools/callbacks/writer_registry.py
@abstractmethod
def close(self) -> None:
    """Closes the writer and finalizes logging."""
    raise NotImplementedError("Writers must implement a close method.")

log_hyperparams(hyperparams) abstractmethod

Logs hyperparameters.

PARAMETER DESCRIPTION
hyperparams

A dictionary of hyperparameters to log.

TYPE: dict

Source code in qadence/ml_tools/callbacks/writer_registry.py
@abstractmethod
def log_hyperparams(self, hyperparams: dict) -> None:
    """
    Logs hyperparameters.

    Args:
        hyperparams (dict): A dictionary of hyperparameters to log.
    """
    raise NotImplementedError("Writers must implement a log_hyperparams method.")

log_model(model, train_dataloader=None, val_dataloader=None, test_dataloader=None) abstractmethod

Logs the model and associated data.

PARAMETER DESCRIPTION
model

The model to log.

TYPE: Module

train_dataloader

DataLoader for training data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

val_dataloader

DataLoader for validation data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

test_dataloader

DataLoader for testing data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

Source code in qadence/ml_tools/callbacks/writer_registry.py
@abstractmethod
def log_model(
    self,
    model: Module,
    train_dataloader: DataLoader | DictDataLoader | None = None,
    val_dataloader: DataLoader | DictDataLoader | None = None,
    test_dataloader: DataLoader | DictDataLoader | None = None,
) -> None:
    """
    Logs the model and associated data.

    Args:
        model (Module): The model to log.
        train_dataloader (DataLoader | DictDataLoader |  None): DataLoader for training data.
        val_dataloader (DataLoader | DictDataLoader |  None): DataLoader for validation data.
        test_dataloader (DataLoader | DictDataLoader |  None): DataLoader for testing data.
    """
    raise NotImplementedError("Writers must implement a log_model method.")

open(config, iteration=None) abstractmethod

Opens the writer and prepares it for logging.

PARAMETER DESCRIPTION
config

Configuration object containing settings for logging.

TYPE: TrainConfig

iteration

The iteration step to start logging from. Defaults to None.

TYPE: int DEFAULT: None

Source code in qadence/ml_tools/callbacks/writer_registry.py
@abstractmethod
def open(self, config: TrainConfig, iteration: int | None = None) -> Any:
    """
    Opens the writer and prepares it for logging.

    Args:
        config: Configuration object containing settings for logging.
        iteration (int, optional): The iteration step to start logging from.
            Defaults to None.
    """
    raise NotImplementedError("Writers must implement an open method.")

plot(model, iteration, plotting_functions) abstractmethod

Logs plots of the model using provided plotting functions.

PARAMETER DESCRIPTION
model

The model to plot.

TYPE: Module

iteration

The current iteration number.

TYPE: int

plotting_functions

Functions used to generate plots.

TYPE: tuple[PlottingFunction, ...]

Source code in qadence/ml_tools/callbacks/writer_registry.py
@abstractmethod
def plot(
    self,
    model: Module,
    iteration: int,
    plotting_functions: tuple[PlottingFunction, ...],
) -> None:
    """
    Logs plots of the model using provided plotting functions.

    Args:
        model (Module): The model to plot.
        iteration (int): The current iteration number.
        plotting_functions (tuple[PlottingFunction, ...]): Functions used to
            generate plots.
    """
    raise NotImplementedError("Writers must implement a plot method.")

print_metrics(result)

Prints the metrics and loss in a readable format.

PARAMETER DESCRIPTION
result

The optimization results to display.

TYPE: OptimizeResult

Source code in qadence/ml_tools/callbacks/writer_registry.py
def print_metrics(self, result: OptimizeResult) -> None:
    """Prints the metrics and loss in a readable format.

    Args:
        result (OptimizeResult): The optimization results to display.
    """

    # Find the key in result.metrics that contains "loss" (case-insensitive)
    loss_key = next((k for k in result.metrics if "loss" in k.lower()), None)
    if loss_key:
        loss_value = result.metrics[loss_key]
        msg = f"Iteration {result.iteration: >7} | {loss_key.title()}: {loss_value:.7f} -"
    else:
        msg = f"Iteration {result.iteration: >7} | Loss: None -"
    msg += " ".join([f"{k}: {v:.7f}" for k, v in result.metrics.items() if k != loss_key])
    print(msg)

write(iteration, metrics) abstractmethod

Logs the results of the current iteration.

PARAMETER DESCRIPTION
iteration

The current training iteration.

TYPE: int

metrics

A dictionary of metrics to log, where keys are metric names and values are the corresponding metric values.

TYPE: dict

Source code in qadence/ml_tools/callbacks/writer_registry.py
@abstractmethod
def write(self, iteration: int, metrics: dict) -> None:
    """
    Logs the results of the current iteration.

    Args:
        iteration (int): The current training iteration.
        metrics (dict): A dictionary of metrics to log, where keys are metric names
                        and values are the corresponding metric values.
    """
    raise NotImplementedError("Writers must implement a write method.")

MLFlowWriter()

Bases: BaseWriter

Writer for logging to MLflow.

ATTRIBUTE DESCRIPTION
run

The active MLflow run.

TYPE: Run

mlflow

The MLflow module.

TYPE: ModuleType

Source code in qadence/ml_tools/callbacks/writer_registry.py
def __init__(self) -> None:
    try:
        from mlflow.entities import Run
    except ImportError:
        raise ImportError(
            "mlflow is not installed. Please install qadence with the mlflow feature: "
            "`pip install qadence[mlflow]`."
        )

    self.run: Run
    self.mlflow: ModuleType

close()

Closes the MLflow run.

Source code in qadence/ml_tools/callbacks/writer_registry.py
def close(self) -> None:
    """Closes the MLflow run."""
    if self.run:
        self.mlflow.end_run()

get_signature_from_dataloader(model, dataloader)

Infers the signature of the model based on the input data from the dataloader.

PARAMETER DESCRIPTION
model

The model to use for inference.

TYPE: Module

dataloader

DataLoader for model inputs.

TYPE: DataLoader | DictDataLoader | None

RETURNS DESCRIPTION
Any

Optional[Any]: The inferred signature, if available.

Source code in qadence/ml_tools/callbacks/writer_registry.py
def get_signature_from_dataloader(
    self, model: Module, dataloader: DataLoader | DictDataLoader | None
) -> Any:
    """
    Infers the signature of the model based on the input data from the dataloader.

    Args:
        model (Module): The model to use for inference.
        dataloader (DataLoader | DictDataLoader |  None): DataLoader for model inputs.

    Returns:
        Optional[Any]: The inferred signature, if available.
    """
    from mlflow.models import infer_signature

    if dataloader is None:
        return None

    xs: InputData
    xs, *_ = next(iter(dataloader))
    preds = model(xs)

    if isinstance(xs, Tensor):
        xs = xs.detach().cpu().numpy()
        preds = preds.detach().cpu().numpy()
        return infer_signature(xs, preds)

    return None

log_hyperparams(hyperparams)

Logs hyperparameters to MLflow.

PARAMETER DESCRIPTION
hyperparams

A dictionary of hyperparameters to log.

TYPE: dict

Source code in qadence/ml_tools/callbacks/writer_registry.py
def log_hyperparams(self, hyperparams: dict) -> None:
    """
    Logs hyperparameters to MLflow.

    Args:
        hyperparams (dict): A dictionary of hyperparameters to log.
    """
    if self.mlflow:
        self.mlflow.log_params(hyperparams)
    else:
        raise RuntimeError(
            "The writer is not initialized."
            "Please call the 'writer.open()' method before writing"
        )

log_model(model, train_dataloader=None, val_dataloader=None, test_dataloader=None)

Logs the model and its signature to MLflow using the provided data loaders.

PARAMETER DESCRIPTION
model

The model to log.

TYPE: Module

train_dataloader

DataLoader for training data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

val_dataloader

DataLoader for validation data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

test_dataloader

DataLoader for testing data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

Source code in qadence/ml_tools/callbacks/writer_registry.py
def log_model(
    self,
    model: Module,
    train_dataloader: DataLoader | DictDataLoader | None = None,
    val_dataloader: DataLoader | DictDataLoader | None = None,
    test_dataloader: DataLoader | DictDataLoader | None = None,
) -> None:
    """
    Logs the model and its signature to MLflow using the provided data loaders.

    Args:
        model (Module): The model to log.
        train_dataloader (DataLoader | DictDataLoader |  None): DataLoader for training data.
        val_dataloader (DataLoader | DictDataLoader |  None): DataLoader for validation data.
        test_dataloader (DataLoader | DictDataLoader |  None): DataLoader for testing data.
    """
    if not self.mlflow:
        raise RuntimeError(
            "The writer is not initialized."
            "Please call the 'writer.open()' method before writing"
        )

    signatures = self.get_signature_from_dataloader(model, train_dataloader)
    self.mlflow.pytorch.log_model(model, artifact_path="model", signature=signatures)

open(config, iteration=None)

Opens the MLflow writer and initializes an MLflow run.

PARAMETER DESCRIPTION
config

Configuration object containing settings for logging.

TYPE: TrainConfig

iteration

The iteration step to start logging from. Defaults to None.

TYPE: int DEFAULT: None

RETURNS DESCRIPTION
mlflow

The MLflow module instance.

TYPE: ModuleType | None

Source code in qadence/ml_tools/callbacks/writer_registry.py
def open(self, config: TrainConfig, iteration: int | None = None) -> ModuleType | None:
    """
    Opens the MLflow writer and initializes an MLflow run.

    Args:
        config: Configuration object containing settings for logging.
        iteration (int, optional): The iteration step to start logging from.
            Defaults to None.

    Returns:
        mlflow: The MLflow module instance.
    """
    import mlflow

    self.mlflow = mlflow
    tracking_uri = os.getenv("MLFLOW_TRACKING_URI", "")
    experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", str(uuid4()))
    run_name = os.getenv("MLFLOW_RUN_NAME", str(uuid4()))

    if self.mlflow:
        self.mlflow.set_tracking_uri(tracking_uri)

        # Create or get the experiment
        exp_filter_string = f"name = '{experiment_name}'"
        experiments = self.mlflow.search_experiments(filter_string=exp_filter_string)
        if not experiments:
            self.mlflow.create_experiment(name=experiment_name)

        self.mlflow.set_experiment(experiment_name)
        self.run = self.mlflow.start_run(run_name=run_name, nested=False)

    return self.mlflow

plot(model, iteration, plotting_functions)

Logs plots of the model using provided plotting functions.

PARAMETER DESCRIPTION
model

The model to plot.

TYPE: Module

iteration

The current iteration number.

TYPE: int

plotting_functions

Functions used to generate plots.

TYPE: tuple[PlottingFunction, ...]

Source code in qadence/ml_tools/callbacks/writer_registry.py
def plot(
    self,
    model: Module,
    iteration: int,
    plotting_functions: tuple[PlottingFunction, ...],
) -> None:
    """
    Logs plots of the model using provided plotting functions.

    Args:
        model (Module): The model to plot.
        iteration (int): The current iteration number.
        plotting_functions (tuple[PlottingFunction, ...]): Functions used
            to generate plots.
    """
    if self.mlflow:
        for pf in plotting_functions:
            descr, fig = pf(model, iteration)
            self.mlflow.log_figure(fig, descr)
    else:
        raise RuntimeError(
            "The writer is not initialized."
            "Please call the 'writer.open()' method before writing"
        )

write(iteration, metrics)

Logs the results of the current iteration to MLflow.

PARAMETER DESCRIPTION
iteration

The current training iteration.

TYPE: int

metrics

A dictionary of metrics to log, where keys are metric names and values are the corresponding metric values.

TYPE: dict

Source code in qadence/ml_tools/callbacks/writer_registry.py
def write(self, iteration: int, metrics: dict) -> None:
    """
    Logs the results of the current iteration to MLflow.

    Args:
        iteration (int): The current training iteration.
        metrics (dict): A dictionary of metrics to log, where keys are metric names
                        and values are the corresponding metric values.
    """
    if self.mlflow:
        self.mlflow.log_metrics(metrics, step=iteration)
    else:
        raise RuntimeError(
            "The writer is not initialized."
            "Please call the 'writer.open()' method before writing."
        )

TensorBoardWriter()

Bases: BaseWriter

Writer for logging to TensorBoard.

ATTRIBUTE DESCRIPTION
writer

The TensorBoard SummaryWriter instance.

TYPE: SummaryWriter

Source code in qadence/ml_tools/callbacks/writer_registry.py
def __init__(self) -> None:
    self.writer = None

close()

Closes the TensorBoard writer.

Source code in qadence/ml_tools/callbacks/writer_registry.py
def close(self) -> None:
    """Closes the TensorBoard writer."""
    if self.writer:
        self.writer.close()

log_hyperparams(hyperparams)

Logs hyperparameters to TensorBoard.

PARAMETER DESCRIPTION
hyperparams

A dictionary of hyperparameters to log.

TYPE: dict

Source code in qadence/ml_tools/callbacks/writer_registry.py
def log_hyperparams(self, hyperparams: dict) -> None:
    """
    Logs hyperparameters to TensorBoard.

    Args:
        hyperparams (dict): A dictionary of hyperparameters to log.
    """
    if self.writer:
        self.writer.add_hparams(hyperparams, {})
    else:
        raise RuntimeError(
            "The writer is not initialized."
            "Please call the 'writer.open()' method before writing"
        )

log_model(model, train_dataloader=None, val_dataloader=None, test_dataloader=None)

Logs the model.

Currently not supported by TensorBoard.

PARAMETER DESCRIPTION
model

The model to log.

TYPE: Module

train_dataloader

DataLoader for training data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

val_dataloader

DataLoader for validation data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

test_dataloader

DataLoader for testing data.

TYPE: DataLoader | DictDataLoader | None DEFAULT: None

Source code in qadence/ml_tools/callbacks/writer_registry.py
def log_model(
    self,
    model: Module,
    train_dataloader: DataLoader | DictDataLoader | None = None,
    val_dataloader: DataLoader | DictDataLoader | None = None,
    test_dataloader: DataLoader | DictDataLoader | None = None,
) -> None:
    """
    Logs the model.

    Currently not supported by TensorBoard.

    Args:
        model (Module): The model to log.
        train_dataloader (DataLoader | DictDataLoader |  None): DataLoader for training data.
        val_dataloader (DataLoader | DictDataLoader |  None): DataLoader for validation data.
        test_dataloader (DataLoader | DictDataLoader |  None): DataLoader for testing data.
    """
    logger.warning("Model logging is not supported by tensorboard. No model will be logged.")

open(config, iteration=None)

Opens the TensorBoard writer.

PARAMETER DESCRIPTION
config

Configuration object containing settings for logging.

TYPE: TrainConfig

iteration

The iteration step to start logging from. Defaults to None.

TYPE: int DEFAULT: None

RETURNS DESCRIPTION
SummaryWriter

The initialized TensorBoard writer.

TYPE: SummaryWriter

Source code in qadence/ml_tools/callbacks/writer_registry.py
def open(self, config: TrainConfig, iteration: int | None = None) -> SummaryWriter:
    """
    Opens the TensorBoard writer.

    Args:
        config: Configuration object containing settings for logging.
        iteration (int, optional): The iteration step to start logging from.
            Defaults to None.

    Returns:
        SummaryWriter: The initialized TensorBoard writer.
    """
    log_dir = str(config.log_folder)
    purge_step = iteration if isinstance(iteration, int) else None
    self.writer = SummaryWriter(log_dir=log_dir, purge_step=purge_step)
    return self.writer

plot(model, iteration, plotting_functions)

Logs plots of the model using provided plotting functions.

PARAMETER DESCRIPTION
model

The model to plot.

TYPE: Module

iteration

The current iteration number.

TYPE: int

plotting_functions

Functions used to generate plots.

TYPE: tuple[PlottingFunction, ...]

Source code in qadence/ml_tools/callbacks/writer_registry.py
def plot(
    self,
    model: Module,
    iteration: int,
    plotting_functions: tuple[PlottingFunction, ...],
) -> None:
    """
    Logs plots of the model using provided plotting functions.

    Args:
        model (Module): The model to plot.
        iteration (int): The current iteration number.
        plotting_functions (tuple[PlottingFunction, ...]): Functions used
            to generate plots.
    """
    if self.writer:
        for pf in plotting_functions:
            descr, fig = pf(model, iteration)
            self.writer.add_figure(descr, fig, global_step=iteration)
    else:
        raise RuntimeError(
            "The writer is not initialized."
            "Please call the 'writer.open()' method before writing"
        )

write(iteration, metrics)

Logs the results of the current iteration to TensorBoard.

PARAMETER DESCRIPTION
iteration

The current training iteration.

TYPE: int

metrics

A dictionary of metrics to log, where keys are metric names and values are the corresponding metric values.

TYPE: dict

Source code in qadence/ml_tools/callbacks/writer_registry.py
def write(self, iteration: int, metrics: dict) -> None:
    """
    Logs the results of the current iteration to TensorBoard.

    Args:
        iteration (int): The current training iteration.
        metrics (dict): A dictionary of metrics to log, where keys are metric names
                        and values are the corresponding metric values.
    """
    if self.writer:
        for key, value in metrics.items():
            self.writer.add_scalar(key, value, iteration)
    else:
        raise RuntimeError(
            "The writer is not initialized."
            "Please call the 'writer.open()' method before writing."
        )

get_writer(tracking_tool)

Factory method to get the appropriate writer based on the tracking tool.

PARAMETER DESCRIPTION
tracking_tool

The experiment tracking tool to use.

TYPE: ExperimentTrackingTool

RETURNS DESCRIPTION
BaseWriter

An instance of the appropriate writer.

TYPE: BaseWriter

Source code in qadence/ml_tools/callbacks/writer_registry.py
def get_writer(tracking_tool: ExperimentTrackingTool) -> BaseWriter:
    """Factory method to get the appropriate writer based on the tracking tool.

    Args:
        tracking_tool (ExperimentTrackingTool): The experiment tracking tool to use.

    Returns:
        BaseWriter: An instance of the appropriate writer.
    """
    writer_class = WRITER_REGISTRY.get(tracking_tool)
    if writer_class:
        return writer_class()
    else:
        raise ValueError(f"Unsupported tracking tool: {tracking_tool}")