PyQTorch embedding
Embedding(model)
Bases: Module
A class holding:
- A parameterbuffer containing concretized vparams + list of featureparams,
- A dictionary of intermediate and leaf variable names mapped to a TorchCall object which can be results of function/expression evaluations.
Source code in qadence2_platforms/backends/pyqtorch/embedding.py
__call__(inputs)
Expects a dict of user-passed name:value pairs for featureparameters.
and assigns all intermediate and leaf variables using the current vparam values and the passed values for featureparameters.
Source code in qadence2_platforms/backends/pyqtorch/embedding.py
ParameterBuffer(trainable_vars, non_trainable_vars)
Bases: Module
A class holding all root parameters either passed by the user.
or trainable variational parameters.
Source code in qadence2_platforms/backends/pyqtorch/embedding.py
torch_call(call)
Convert a Call
object into a torchified function which can be evaluated using.
a vparams and inputs dict.