# Load a datasetimporttorch_geometric.datasetsaspyg_datasetog_ptcfm=pyg_dataset.TUDataset(root="dataset",name="PTC_FM")# Setup a quantum feature extractor for this dataset.# In this example, we'll use QutipExtractor, to emulate a Quantum Device on our machine.importqek.data.graphsasqek_graphsimportqek.data.extractorsasqek_extractorsextractor=qek_extractors.QutipExtractor(compiler=qek_graphs.PTCFMCompiler())# Add the graphs, compile them and look at the results.extractor.add_graphs(graphs=og_ptcfm)extractor.compile()processed_dataset=extractor.run().processed_data# Prepare a machine learning pipeline with Scikit Learn.fromsklearn.model_selectionimporttrain_test_splitfromsklearn.svmimportSVCX=[datafordatainprocessed_dataset]# Featuresy=[data.targetfordatainprocessed_dataset]# TargetsX_train,X_test,y_train,y_test=train_test_split(X,y,stratify=y,test_size=0.2,random_state=42)# Train a kernelfromqek.kernelimportQuantumEvolutionKernelasQEKkernel=QEK(mu=0.5)model=SVC(kernel=kernel,random_state=42)model.fit(X_train,y_train)