Skip to content

Quantum-related components of a QUBO solver

Pulse Shapping

AdiabaticPulseShaper(instance, config, backend)

Bases: BasePulseShaper

A Standard Adiabatic Pulse shaper.

Source code in qubosolver/pipeline/pulse.py
def __init__(self, instance: QUBOInstance, config: SolverConfig, backend: BaseBackend):
    """
    Initialize the pulse shaping module with a QUBO instance.

    Args:
        instance (QUBOInstance): The QUBO problem instance.
        config (SolverConfig): The solver configuration.
        backend (BaseBackend): Backend to use.
    """
    self.instance: QUBOInstance = instance
    self.config: SolverConfig = config
    self.pulse: Pulse | None = None
    self.backend = backend
    self.device = backend.device()

generate(register, instance)

Generate an adiabatic pulse based on the QUBO instance and physical register.

PARAMETER DESCRIPTION
register

The physical register layout for the quantum system.

TYPE: Register

instance

The QUBO instance.

TYPE: QUBOInstance

RETURNS DESCRIPTION
tuple[Pulse, QUBOSolution]

tuple[Pulse, QUBOSolution | None]: - Pulse: A generated pulse object wrapping a Pulser pulse. - QUBOSolution: An instance of the qubo solution - str | None: The bitstring (solution) -> Not computed - float | None: The cost (energy value) -> Not computed - float | None: The probabilities for each bitstring -> Not computed - float | None: The counts of each bitstring -> Not computed

Source code in qubosolver/pipeline/pulse.py
def generate(
    self,
    register: Register,
    instance: QUBOInstance,
) -> tuple[Pulse, QUBOSolution]:
    """
    Generate an adiabatic pulse based on the QUBO instance and physical register.

    Args:
        register (Register): The physical register layout for the quantum system.
        instance (QUBOInstance): The QUBO instance.

    Returns:
        tuple[Pulse, QUBOSolution | None]:
            - Pulse: A generated pulse object wrapping a Pulser pulse.
            - QUBOSolution: An instance of the qubo solution
                - str | None: The bitstring (solution) -> Not computed
                - float | None: The cost (energy value) -> Not computed
                - float | None: The probabilities for each bitstring -> Not computed
                - float | None: The counts of each bitstring -> Not computed
    """

    QUBO = instance.coefficients
    weights_list = torch.abs(torch.diag(QUBO)).tolist()
    max_node_weight = max(weights_list)
    norm_weights_list = [1 - (w / max_node_weight) for w in weights_list]

    T = 4000
    off_diag = QUBO[
        ~torch.eye(QUBO.shape[0], dtype=bool)
    ]  # Selecting off-diagonal terms of the Qubo with a mask
    rydberg_global = self.device.channels["rydberg_global"]
    assert rydberg_global.max_amp is not None  # FIXME: Document why
    Omega = min(
        torch.max(off_diag).item(),
        rydberg_global.max_amp - 1e-9,
    )

    delta_0 = torch.min(torch.diag(QUBO)).item()
    delta_f = -delta_0

    amp_wave = InterpolatedWaveform(T, [1e-9, Omega, 1e-9])
    det_wave = InterpolatedWaveform(T, [delta_0, 0, delta_f])

    pulser_pulse = PulserPulse(amp_wave, det_wave, 0)
    # PulserPulse has some magic that ensures its constructor does not always return
    # an instance of PulserPulse. Let's make sure (and help mypy realize) that we
    # are building an instance of PulserPulse.
    assert isinstance(pulser_pulse, PulserPulse)

    shaped_pulse = Pulse(pulse=pulser_pulse)
    shaped_pulse.norm_weights = norm_weights_list
    shaped_pulse.duration = T

    self.pulse = shaped_pulse
    solution = QUBOSolution(torch.Tensor(), torch.Tensor())

    return self.pulse, solution

BasePulseShaper(instance, config, backend)

Bases: ABC

Abstract base class for generating pulse schedules based on a QUBO problem.

This class transforms the structure of a QUBOInstance into a quantum pulse sequence that can be applied to a physical register. The register is passed at the time of pulse generation, not during initialization.

ATTRIBUTE DESCRIPTION
instance

The QUBO problem instance.

TYPE: QUBOInstance

config

The solver configuration.

TYPE: SolverConfig

pulse

A saved current pulse obtained by generate.

TYPE: Pulse

backend

Backend to use.

TYPE: BaseBackend

device

Device from backend.

TYPE: Device

Initialize the pulse shaping module with a QUBO instance.

PARAMETER DESCRIPTION
instance

The QUBO problem instance.

TYPE: QUBOInstance

config

The solver configuration.

TYPE: SolverConfig

backend

Backend to use.

TYPE: BaseBackend

Source code in qubosolver/pipeline/pulse.py
def __init__(self, instance: QUBOInstance, config: SolverConfig, backend: BaseBackend):
    """
    Initialize the pulse shaping module with a QUBO instance.

    Args:
        instance (QUBOInstance): The QUBO problem instance.
        config (SolverConfig): The solver configuration.
        backend (BaseBackend): Backend to use.
    """
    self.instance: QUBOInstance = instance
    self.config: SolverConfig = config
    self.pulse: Pulse | None = None
    self.backend = backend
    self.device = backend.device()

generate(register, instance) abstractmethod

Generate a pulse based on the problem and the provided register.

PARAMETER DESCRIPTION
register

The physical register layout.

TYPE: Register

instance

The QUBO instance.

TYPE: QUBOInstance

RETURNS DESCRIPTION
Pulse

A generated pulse object wrapping a Pulser pulse.

TYPE: Pulse

QUBOSolution

An instance of the qubo solution

TYPE: QUBOSolution

Source code in qubosolver/pipeline/pulse.py
@abstractmethod
def generate(
    self,
    register: Register,
    instance: QUBOInstance,
) -> tuple[Pulse, QUBOSolution]:
    """
    Generate a pulse based on the problem and the provided register.

    Args:
        register (Register): The physical register layout.
        instance (QUBOInstance): The QUBO instance.

    Returns:
        Pulse: A generated pulse object wrapping a Pulser pulse.
        QUBOSolution: An instance of the qubo solution
    """
    pass

OptimizedPulseShaper(instance, config, backend)

Bases: BasePulseShaper

Pulse shaper that uses optimization to find the best pulse parameters for solving QUBOs. Returns an optimized pulse, the bitstrings, their counts, probabilities, and costs.

ATTRIBUTE DESCRIPTION
pulse

current pulse.

TYPE: Pulse

best_cost

Current best cost.

TYPE: float

best_bitstring

Current best bitstring.

TYPE: Tensor | list

bitstrings

List of current bitstrings obtained.

TYPE: Tensor | list

counts

Frequencies of bitstrings.

TYPE: Tensor | list

probabilities

Probabilities of bitstrings.

TYPE: Tensor | list

costs

Qubo cost.

TYPE: Tensor | list

custom_qubo_cost

Apply a different qubo cost evaluation during optimization. Must be defined as: def custom_qubo_cost(bitstring: str, QUBO: torch.Tensor) -> float. Defaults to None, meaning we use the default QUBO evaluation.

TYPE: Callable[[str, Tensor], float]

custom_objective_fn

For bayesian optimization, one can change the output of self.run_simulation to optimize differently. Instead of using the best cost out of the samples, one can change the objective for an average, or any function out of the form cost_eval = custom_objective_fn(bitstrings, counts, probabilities, costs, best_cost, best_bitstring) Defaults to None, which means we optimize using the best cost out of the samples.

TYPE: Callable[[list, list, list, list, float, str], float]

callback_objective

Apply a callback during bayesian optimization. Only accepts one input dictionary created during optimization d = {"x": x, "cost_eval": cost_eval} hence should be defined as: def callback_fn(d: dict) -> None: Defaults to None, which means no callback is applied.

TYPE: Callable[..., None]

Instantiate an OptimizedPulseShaper.

PARAMETER DESCRIPTION
instance

Qubo instance.

TYPE: QUBOInstance

config

Configuration for solving.

TYPE: SolverConfig

backend

Backend to use during optimization.

TYPE: BaseBackend

Source code in qubosolver/pipeline/pulse.py
def __init__(
    self,
    instance: QUBOInstance,
    config: SolverConfig,
    backend: BaseBackend,
):
    """Instantiate an `OptimizedPulseShaper`.

    Args:
        instance (QUBOInstance): Qubo instance.
        config (SolverConfig): Configuration for solving.
        backend (BaseBackend): Backend to use during optimization.

    """
    super().__init__(instance, config, backend)

    self.pulse = None
    self.best_cost = None
    self.best_bitstring = None
    self.best_params = None
    self.bitstrings = None
    self.counts = None
    self.probabilities = None
    self.costs = None
    self.custom_qubo_cost = self.config.pulse_shaping.custom_qubo_cost
    self.custom_objective_fn = self.config.pulse_shaping.custom_objective
    self.callback_objective = self.config.pulse_shaping.callback_objective

build_pulse(params)

Build the pulse from a list of parameters for the objective.

PARAMETER DESCRIPTION
params

List of parameters.

TYPE: list

RETURNS DESCRIPTION
Pulse

pulse sequence.

TYPE: Pulse

Source code in qubosolver/pipeline/pulse.py
def build_pulse(self, params: list) -> Pulse:
    """Build the pulse from a list of parameters for the objective.

    Args:
        params (list): List of parameters.

    Returns:
        Pulse: pulse sequence.
    """
    amp = InterpolatedWaveform(5000, [1e-9] + list(params[:3]) + [1e-9])
    det = InterpolatedWaveform(5000, [params[3]] + list(params[4:]) + [params[3]])
    pulser_pulse = PulserPulse(amp, det, 0)
    # PulserPulse has some magic that ensures its constructor does not always return
    # an instance of PulserPulse. Let's make sure (and help mypy realize) that we
    # are building an instance of PulserPulse.
    assert isinstance(pulser_pulse, PulserPulse)

    pulse = Pulse(
        pulse=pulser_pulse,
        norm_weights=self.norm_weights_list,
        duration=5000,
    )
    # pulse.pulse.norm_weights = self.norm_weights_list
    # pulse.pulse.duration = 5000
    return pulse

compute_qubo_cost(bitstring, QUBO)

The qubo cost for a single bitstring to apply during optimization.

PARAMETER DESCRIPTION
bitstring

candidate bitstring.

TYPE: str

QUBO

qubo coefficients.

TYPE: Tensor

RETURNS DESCRIPTION
float

respective cost of bitstring.

TYPE: float

Source code in qubosolver/pipeline/pulse.py
def compute_qubo_cost(self, bitstring: str, QUBO: torch.Tensor) -> float:
    """The qubo cost for a single bitstring to apply during optimization.

    Args:
        bitstring (str): candidate bitstring.
        QUBO (torch.Tensor): qubo coefficients.

    Returns:
        float: respective cost of bitstring.
    """
    if self.custom_qubo_cost is None:
        return calculate_qubo_cost(bitstring, QUBO)

    return cast(float, self.custom_qubo_cost(bitstring, QUBO))

generate(register, instance)

Generate a pulse via optimization.

PARAMETER DESCRIPTION
register

The physical register layout.

TYPE: Register

instance

The QUBO instance.

TYPE: QUBOInstance

RETURNS DESCRIPTION
Pulse

A generated pulse object wrapping a Pulser pulse.

TYPE: Pulse

QUBOSolution

An instance of the qubo solution

TYPE: QUBOSolution

Source code in qubosolver/pipeline/pulse.py
def generate(
    self,
    register: Register,
    instance: QUBOInstance,
) -> tuple[Pulse, QUBOSolution]:
    """
    Generate a pulse via optimization.

    Args:
        register (Register): The physical register layout.
        instance (QUBOInstance): The QUBO instance.

    Returns:
        Pulse: A generated pulse object wrapping a Pulser pulse.
        QUBOSolution: An instance of the qubo solution
    """
    # TODO: Harmonize the output of the pulse_shaper generate
    QUBO = instance.coefficients
    self.register = register
    self.norm_weights_list = self._compute_norm_weights(QUBO)

    n_amp = 3
    n_det = 3
    max_amp = self.device.channels["rydberg_global"].max_amp
    assert max_amp is not None
    max_amp = max_amp - 1e-6
    # added to avoid rouding errors that make the simulation fail (overcoming max_amp)

    max_det = self.device.channels["rydberg_global"].max_abs_detuning
    assert max_det is not None
    max_det -= 1e-6
    # same

    bounds = [(1, max_amp)] * n_amp + [(-max_det, 0)] + [(-max_det, max_det)] * (n_det - 1)
    x0 = (
        self.config.pulse_shaping.initial_omega_parameters
        + self.config.pulse_shaping.initial_detuning_parameters
    )

    def objective(x: list[float]) -> float:
        pulse = self.build_pulse(x)

        try:
            bitstrings, counts, probabilities, costs, cost_eval, best_bitstring = (
                self.run_simulation(
                    self.register,
                    pulse,
                    QUBO,
                    convert_to_tensor=False,
                )
            )
            if self.custom_objective_fn is not None:
                cost_eval = self.custom_objective_fn(
                    bitstrings,
                    counts,
                    probabilities,
                    costs,
                    cost_eval,
                    best_bitstring,
                )
            if not np.isfinite(cost_eval):
                print(f"[Warning] Non-finite cost encountered: {cost_eval} at x={x}")
                cost_eval = 1e4

        except Exception as e:
            print(f"[Exception] Error during simulation at x={x}: {e}")
            cost_eval = 1e4

        if self.callback_objective is not None:
            self.callback_objective({"x": x, "cost_eval": cost_eval})
        return float(cost_eval)

    opt_result = gp_minimize(objective, bounds, x0=x0, n_calls=self.config.n_calls)

    if opt_result and opt_result.x:
        self.best_params = opt_result.x
        self.pulse = self.build_pulse(self.best_params)  # type: ignore[arg-type]

        (
            self.bitstrings,
            self.counts,
            self.probabilities,
            self.costs,
            self.best_cost,
            self.best_bitstring,
        ) = self.run_simulation(self.register, self.pulse, QUBO, convert_to_tensor=True)

    if self.bitstrings is None or self.counts is None:
        # TODO: what needs to be returned here?
        # the generate function should always return a pulse - even if it is not good.
        # we need to return a pulse (self.pulse) - which is none here.
        return self.pulse, QUBOSolution(None, None)  # type: ignore[return-value]

    assert self.costs is not None
    solution = QUBOSolution(
        bitstrings=self.bitstrings,
        counts=self.counts,
        probabilities=self.probabilities,
        costs=self.costs,
    )
    assert self.pulse is not None
    return self.pulse, solution

run_simulation(register, pulse, QUBO, convert_to_tensor=True)

Run a quantum program using backend and returns a tuple of (bitstrings, counts, probabilities, costs, best cost, best bitstring).

PARAMETER DESCRIPTION
register

register of quantum program.

TYPE: Register

pulse

pulse sequence to run on backend.

TYPE: Pulse

QUBO

Qubo coefficients.

TYPE: Tensor

convert_to_tensor

Convert tuple components to tensors. Defaults to True.

TYPE: bool DEFAULT: True

RETURNS DESCRIPTION
tuple

tuple of (bitstrings, counts, probabilities, costs, best cost, best bitstring)

TYPE: tuple

Source code in qubosolver/pipeline/pulse.py
def run_simulation(
    self,
    register: Register,
    pulse: Pulse,
    QUBO: torch.Tensor,
    convert_to_tensor: bool = True,
) -> tuple:
    """Run a quantum program using backend and returns
        a tuple of (bitstrings, counts, probabilities, costs, best cost, best bitstring).

    Args:
        register (Register): register of quantum program.
        pulse (Pulse): pulse sequence to run on backend.
        QUBO (torch.Tensor): Qubo coefficients.
        convert_to_tensor (bool, optional): Convert tuple components to tensors.
            Defaults to True.

    Returns:
        tuple: tuple of (bitstrings, counts, probabilities, costs, best cost, best bitstring)
    """
    try:
        program = QuantumProgram(
            register=register.register, pulse=pulse.pulse, device=self.device
        )
        bitstring_counts = self.backend.run(program).counts

        cost_dict = {b: self.compute_qubo_cost(b, QUBO) for b in bitstring_counts.keys()}

        best_bitstring = min(cost_dict, key=cost_dict.get)  # type: ignore[arg-type]
        best_cost = cost_dict[best_bitstring]

        if convert_to_tensor:
            keys = list(bitstring_counts.keys())
            values = list(bitstring_counts.values())

            bitstrings_tensor = torch.tensor(
                [[int(b) for b in bitstr] for bitstr in keys], dtype=torch.int32
            )
            counts_tensor = torch.tensor(values, dtype=torch.int32)
            probabilities_tensor = counts_tensor.float() / counts_tensor.sum()

            costs_tensor = torch.tensor(
                [self.compute_qubo_cost(b, QUBO) for b in keys], dtype=torch.float32
            )

            return (
                bitstrings_tensor,
                counts_tensor,
                probabilities_tensor,
                costs_tensor,
                best_cost,
                best_bitstring,
            )
        else:
            counts = list(bitstring_counts.values())
            nsamples = float(sum(counts))
            return (
                list(bitstring_counts.keys()),
                counts,
                [c / nsamples for c in counts],
                list(cost_dict.values()),
                best_cost,
                best_bitstring,
            )

    except Exception as e:
        print(f"Simulation failed: {e}")
        return (
            torch.tensor([]),
            torch.tensor([]),
            torch.tensor([]),
            torch.tensor([]),
            float("inf"),
            None,
        )

get_pulse_shaper(instance, config, backend)

Method that returns the correct PulseShaper based on configuration. The correct pulse shaping method can be identified using the config, and an object of this pulseshaper can be returned using this function.

PARAMETER DESCRIPTION
instance

The QUBO problem to embed.

TYPE: QUBOInstance

config

The solver configuration used.

TYPE: SolverConfig

backend

Backend to extract device from or to use during pulse shaping.

TYPE: BaseBackend

RETURNS DESCRIPTION
BasePulseShaper

The representative Pulse Shaper object.

Source code in qubosolver/pipeline/pulse.py
def get_pulse_shaper(
    instance: QUBOInstance,
    config: SolverConfig,
    backend: BaseBackend,
) -> BasePulseShaper:
    """
    Method that returns the correct PulseShaper based on configuration.
    The correct pulse shaping method can be identified using the config, and an
    object of this pulseshaper can be returned using this function.

    Args:
        instance (QUBOInstance): The QUBO problem to embed.
        config (SolverConfig): The solver configuration used.
        backend (BaseBackend): Backend to extract device from or to use
            during pulse shaping.

    Returns:
        (BasePulseShaper): The representative Pulse Shaper object.
    """
    if config.pulse_shaping.pulse_shaping_method == PulseType.ADIABATIC:
        return AdiabaticPulseShaper(instance, config, backend)
    elif config.pulse_shaping.pulse_shaping_method == PulseType.OPTIMIZED:
        return OptimizedPulseShaper(instance, config, backend)
    elif issubclass(config.pulse_shaping.pulse_shaping_method, BasePulseShaper):
        return cast(
            BasePulseShaper,
            config.pulse_shaping.pulse_shaping_method(instance, config, backend),
        )
    else:
        raise NotImplementedError

Embedding

BLaDEmbedder(instance, config, backend)

Bases: BaseEmbedder

BLaDE (Balanced Latently Dimensional Embedder)

Computes positions for nodes so that their interactions according to a device approach the desired values at best. The result can be used as an embedding. Its prior target is on interaction matrices or QUBOs, but it can also be used for MIS with limitations if the adjacency matrix is converted into a QUBO. The general principle is based on the Fruchterman-Reingold algorithm.

Source code in qubosolver/pipeline/embedder.py
def __init__(self, instance: QUBOInstance, config: SolverConfig, backend: BaseBackend):
    """
    Args:
        instance (QUBOInstance): The QUBO problem to embed.
        config (SolverConfig): The Solver Configuration.
    """
    self.instance: QUBOInstance = instance
    self.config: SolverConfig = config
    self.register: TargetRegister | None = None
    self.backend = backend

BaseEmbedder(instance, config, backend)

Bases: ABC

Abstract base class for all embedders.

Prepares the geometry (register) of atoms based on the QUBO instance. Returns a Register compatible with Pasqal/Pulser devices.

PARAMETER DESCRIPTION
instance

The QUBO problem to embed.

TYPE: QUBOInstance

config

The Solver Configuration.

TYPE: SolverConfig

Source code in qubosolver/pipeline/embedder.py
def __init__(self, instance: QUBOInstance, config: SolverConfig, backend: BaseBackend):
    """
    Args:
        instance (QUBOInstance): The QUBO problem to embed.
        config (SolverConfig): The Solver Configuration.
    """
    self.instance: QUBOInstance = instance
    self.config: SolverConfig = config
    self.register: TargetRegister | None = None
    self.backend = backend

embed() abstractmethod

Creates a layout of atoms as the register.

RETURNS DESCRIPTION
Register

The register.

TYPE: Register

Source code in qubosolver/pipeline/embedder.py
@abstractmethod
def embed(self) -> TargetRegister:
    """
    Creates a layout of atoms as the register.

    Returns:
        Register: The register.
    """

GreedyEmbedder(instance, config, backend)

Bases: BaseEmbedder

Create an embedding in a greedy fashion.

At each step, place one logical node onto one trap to minimize the incremental mismatch between the logical QUBO matrix Q and the physical interaction matrix U (approx. C / ||r_i - r_j||^6).

Source code in qubosolver/pipeline/embedder.py
def __init__(self, instance: QUBOInstance, config: SolverConfig, backend: BaseBackend):
    """
    Args:
        instance (QUBOInstance): The QUBO problem to embed.
        config (SolverConfig): The Solver Configuration.
    """
    self.instance: QUBOInstance = instance
    self.config: SolverConfig = config
    self.register: TargetRegister | None = None
    self.backend = backend

embed()

Creates a layout of atoms as the register.

RETURNS DESCRIPTION
Register

The register.

TYPE: Register

Source code in qubosolver/pipeline/embedder.py
@typing.no_type_check
def embed(self) -> TargetRegister:
    """
    Creates a layout of atoms as the register.

    Returns:
        Register: The register.
    """
    if self.config.embedding.traps < self.instance.size:
        raise ValueError(
            "Number of traps must be at least equal to the number of atoms on the register."
        )

    # compute density (unchanged)
    self.config.embedding.density = calculate_density(
        self.instance.coefficients, self.instance.size
    )

    # build params for the Greedy algorithm
    params = {
        "device": self.backend.device(),
        "layout": self.config.embedding.layout_greedy_embedder,
        "traps": int(self.config.embedding.traps),
        "spacing": float(self.config.embedding.spacing),
        # animation controls (all read by Greedy)
        "draw_steps": bool(self.config.embedding.draw_steps),  # collect per-step data
        "animation": bool(self.config.embedding.draw_steps),  # render animation after run
        "animation_save_path": self.config.embedding.animation_save_path,  # optional export
        # "animation_top_k": 5,  # (optional) uncomment if you add support for this in Greedy
    }

    # --- DEBUG / INFO: show where Greedy comes from + the params we’ll pass
    dev = params["device"]
    dev_str = (
        getattr(dev, "name", None)
        or getattr(dev, "device_name", None)
        or dev.__class__.__name__
    )
    printable = dict(params)
    printable["device"] = dev_str  # avoid dumping the whole object
    # --- Call Greedy (unchanged public signature)
    best, _, coords, _, _ = Greedy().launch_greedy(
        Q=self.instance.coefficients,
        params=params,
        # no extra kwargs; Greedy reads animation/draw/save_path from params
    )

    # build the register (unchanged)
    qubits = {f"q{i}": coord for i, coord in enumerate(coords)}
    register = PulserRegister(qubits)
    return TargetRegister(self.backend.device(), register)

get_embedder(instance, config, backend)

Method that returns the correct embedder based on configuration. The correct embedding method can be identified using the config, and an object of this embedding can be returned using this function.

PARAMETER DESCRIPTION
instance

The QUBO problem to embed.

TYPE: QUBOInstance

config

The quantum device to target.

TYPE: Device

RETURNS DESCRIPTION
BaseEmbedder

The representative embedder object.

Source code in qubosolver/pipeline/embedder.py
def get_embedder(
    instance: QUBOInstance, config: SolverConfig, backend: BaseBackend
) -> BaseEmbedder:
    """
    Method that returns the correct embedder based on configuration.
    The correct embedding method can be identified using the config, and an
    object of this embedding can be returned using this function.

    Args:
        instance (QUBOInstance): The QUBO problem to embed.
        config (Device): The quantum device to target.

    Returns:
        (BaseEmbedder): The representative embedder object.
    """

    if config.embedding.embedding_method == EmbedderType.BLADE:
        return BLaDEmbedder(instance, config, backend)
    elif config.embedding.embedding_method == EmbedderType.GREEDY:
        return GreedyEmbedder(instance, config, backend)
    elif issubclass(config.embedding.embedding_method, BaseEmbedder):
        return typing.cast(
            BaseEmbedder, config.embedding.embedding_method(instance, config, backend)
        )
    else:
        raise NotImplementedError