Skip to content

Quantum-related components of a QUBO solver

Drive Shapping

AdiabaticDriveShaper(instance, config, backend)

Bases: BaseDriveShaper

A Standard Adiabatic Drive shaper.

Source code in qubosolver/pipeline/drive.py
def __init__(self, instance: QUBOInstance, config: SolverConfig, backend: BaseBackend):
    """
    Initialize the drive shaping module with a QUBO instance.

    Args:
        instance (QUBOInstance): The QUBO problem instance.
        config (SolverConfig): The solver configuration.
        backend (BaseBackend): Backend to use.
    """
    self.instance: QUBOInstance = instance
    self.config: SolverConfig = config
    self.drive: Drive | None = None
    self.backend = backend
    self.device = self.config.device

    self.qubo_coefficients = instance.coefficients

    # check if device allow DMM
    self.dmm = self.config.drive_shaping.dmm and (
        len(list(self.config.device._device.dmm_channels.keys())) > 0
    )

generate(register)

Generate an adiabatic drive based on the QUBO instance and physical register.

PARAMETER DESCRIPTION
register

The physical register layout for the quantum system.

TYPE: Register

RETURNS DESCRIPTION
tuple[Drive, QUBOSolution]

tuple[Drive, QUBOSolution | None]: - Drive: A generated Drive object. - QUBOSolution: An instance of the qubo solution - str | None: The bitstring (solution) -> Not computed - float | None: The cost (energy value) -> Not computed - float | None: The probabilities for each bitstring -> Not computed - float | None: The counts of each bitstring -> Not computed

Source code in qubosolver/pipeline/drive.py
def generate(
    self,
    register: Register,
) -> tuple[Drive, QUBOSolution]:
    """
    Generate an adiabatic drive based on the QUBO instance and physical register.

    Args:
        register (Register): The physical register layout for the quantum system.

    Returns:
        tuple[Drive, QUBOSolution | None]:
            - Drive: A generated Drive object.
            - QUBOSolution: An instance of the qubo solution
                - str | None: The bitstring (solution) -> Not computed
                - float | None: The cost (energy value) -> Not computed
                - float | None: The probabilities for each bitstring -> Not computed
                - float | None: The counts of each bitstring -> Not computed
    """

    # for conversions to qoolqit
    TIME, ENERGY, _ = self.device.converter.factors
    QUBO = self.qubo_coefficients

    norm_weights_list = self._compute_norm_weights()

    off_diag = QUBO[
        ~torch.eye(QUBO.shape[0], dtype=torch.bool)
    ]  # Selecting off-diagonal terms of the Qubo with a mask

    # device constraints
    rydberg_global = self.device._device.channels["rydberg_global"]
    min_avg_amp = rydberg_global.min_avg_amp
    max_amp = rydberg_global.max_amp

    Omega = torch.mean(off_diag).item()
    sign = 1.0 if Omega >= 0 else -1.0
    mag = abs(Omega)
    if min_avg_amp:
        # to make the average values higher then the minimum
        # use the average value of a parabola for
        # the amplitude waveform with Omega
        mag = max(mag, ENERGY * (3.0 * (min_avg_amp + 1e-9) / 2.0))
    if max_amp:
        mag = min(
            mag,
            max_amp - 1e-9,
        )
    Omega = sign * mag

    delta_0 = torch.min(torch.diag(QUBO)).item()
    delta_f = -delta_0

    # enforces AnalogDevice max sequence duration if device has no max
    max_seq_duration = (
        self.device._device.max_sequence_duration or AnalogDevice.max_sequence_duration
    )
    assert max_seq_duration is not None

    max_seq_duration /= TIME
    Omega /= TIME
    delta_0 /= TIME
    delta_f /= TIME

    amp_wave = InterpolatedWaveform(max_seq_duration, [1e-9 / TIME, Omega, 1e-9 / TIME])
    det_wave = InterpolatedWaveform(max_seq_duration, [delta_0, 0, delta_f])

    wdetunings = None
    if self.dmm and delta_f > 0:
        wdetunings = weighted_detunings(
            register,
            max_seq_duration,
            norm_weights_list,
            -delta_f,
        )

    shaped_drive = Drive(amplitude=amp_wave, detuning=det_wave, weighted_detunings=wdetunings)
    solution = QUBOSolution(torch.Tensor(), torch.Tensor())

    return shaped_drive, solution

BaseDriveShaper(instance, config, backend)

Bases: ABC

Abstract base class for generating Qoolqit drives based on a QUBO problem.

This class transforms the structure of a QUBOInstance into a quantum waveform sequence or drive that can be applied to a physical register. The register is passed at the time of drive generation, not during initialization.

ATTRIBUTE DESCRIPTION
instance

The QUBO problem instance.

TYPE: QUBOInstance

config

The solver configuration.

TYPE: SolverConfig

drive

A saved current drive obtained by generate.

TYPE: Drive

backend

Backend to use.

TYPE: BaseBackend

device

Device from backend.

TYPE: Device

Initialize the drive shaping module with a QUBO instance.

PARAMETER DESCRIPTION
instance

The QUBO problem instance.

TYPE: QUBOInstance

config

The solver configuration.

TYPE: SolverConfig

backend

Backend to use.

TYPE: BaseBackend

Source code in qubosolver/pipeline/drive.py
def __init__(self, instance: QUBOInstance, config: SolverConfig, backend: BaseBackend):
    """
    Initialize the drive shaping module with a QUBO instance.

    Args:
        instance (QUBOInstance): The QUBO problem instance.
        config (SolverConfig): The solver configuration.
        backend (BaseBackend): Backend to use.
    """
    self.instance: QUBOInstance = instance
    self.config: SolverConfig = config
    self.drive: Drive | None = None
    self.backend = backend
    self.device = self.config.device

    self.qubo_coefficients = instance.coefficients

    # check if device allow DMM
    self.dmm = self.config.drive_shaping.dmm and (
        len(list(self.config.device._device.dmm_channels.keys())) > 0
    )

generate(register) abstractmethod

Generate a drive based on the problem and the provided register.

PARAMETER DESCRIPTION
register

The physical register layout.

TYPE: Register

RETURNS DESCRIPTION
Drive

A generated Drive.

TYPE: Drive

QUBOSolution

An instance of the qubo solution

TYPE: QUBOSolution

Source code in qubosolver/pipeline/drive.py
@abstractmethod
def generate(
    self,
    register: Register,
) -> tuple[Drive, QUBOSolution]:
    """
    Generate a drive based on the problem and the provided register.

    Args:
        register (Register): The physical register layout.

    Returns:
        Drive: A generated Drive.
        QUBOSolution: An instance of the qubo solution
    """
    pass

OptimizedDriveShaper(instance, config, backend)

Bases: BaseDriveShaper

Drive shaper that uses optimization to find the best drive parameters for solving QUBOs. Returns an optimized drive, the bitstrings, their counts, probabilities, and costs.

ATTRIBUTE DESCRIPTION
drive

current drive.

TYPE: Drive

best_cost

Current best cost.

TYPE: float

best_bitstring

Current best bitstring.

TYPE: Tensor | list

bitstrings

List of current bitstrings obtained.

TYPE: Tensor | list

counts

Frequencies of bitstrings.

TYPE: Tensor | list

probabilities

Probabilities of bitstrings.

TYPE: Tensor | list

costs

Qubo cost.

TYPE: Tensor | list

optimized_custom_qubo_cost

Apply a different qubo cost evaluation during optimization. Must be defined as: def optimized_custom_qubo_cost(bitstring: str, QUBO: torch.Tensor) -> float. Defaults to None, meaning we use the default QUBO evaluation.

TYPE: Callable[[str, Tensor], float]

optimized_custom_objective_fn

For bayesian optimization, one can change the output of self.run_simulation to optimize differently. Instead of using the best cost out of the samples, one can change the objective for an average, or any function out of the form cost_eval = optimized_custom_objective_fn(bitstrings, counts, probabilities, costs, best_cost, best_bitstring) Defaults to None, which means we optimize using the best cost out of the samples.

TYPE: Callable[[list, list, list, list, float, str], float]

optimized_callback_objective

Apply a callback during bayesian optimization. Only accepts one input dictionary created during optimization d = {"x": x, "cost_eval": cost_eval} hence should be defined as: def callback_fn(d: dict) -> None: Defaults to None, which means no callback is applied.

TYPE: Callable[..., None]

Instantiate an OptimizedDriveShaper.

PARAMETER DESCRIPTION
instance

Qubo instance.

TYPE: QUBOInstance

config

Configuration for solving.

TYPE: SolverConfig

backend

Backend to use during optimization.

TYPE: BaseBackend

Source code in qubosolver/pipeline/drive.py
def __init__(
    self,
    instance: QUBOInstance,
    config: SolverConfig,
    backend: BaseBackend,
):
    """Instantiate an `OptimizedDriveShaper`.

    Args:
        instance (QUBOInstance): Qubo instance.
        config (SolverConfig): Configuration for solving.
        backend (BaseBackend): Backend to use during optimization.

    """
    super().__init__(instance, config, backend)

    self.drive = None
    self.best_cost = None
    self.best_bitstring = None
    self.best_params = None
    self.bitstrings = None
    self.counts = None
    self.probabilities = None
    self.costs = None
    self.optimized_custom_qubo_cost = self.config.drive_shaping.optimized_custom_qubo_cost
    self.optimized_custom_objective_fn = self.config.drive_shaping.optimized_custom_objective
    self.optimized_callback_objective = self.config.drive_shaping.optimized_callback_objective

build_drive(params)

Build the drive from a list of parameters for the objective.

PARAMETER DESCRIPTION
params

List of parameters.

TYPE: list

RETURNS DESCRIPTION
Drive

Drive sequence.

TYPE: Drive

Source code in qubosolver/pipeline/drive.py
def build_drive(self, params: list) -> Drive:
    """Build the drive from a list of parameters for the objective.

    Args:
        params (list): List of parameters.

    Returns:
        Drive: Drive sequence.
    """
    # enforces AnalogDevice max sequence duration since Digital's has no max duration
    max_seq_duration = AnalogDevice.max_sequence_duration
    assert max_seq_duration is not None

    TIME, _, _ = self.device.converter.factors
    max_seq_duration /= TIME
    amp_params = [1e-9] + list(params[:3]) + [1e-9]
    det_params = [params[3]] + list(params[4:]) + [params[3]]
    amp_params = [p / TIME for p in amp_params]
    det_params = [p / TIME for p in det_params]

    amp_wave = InterpolatedWaveform(max_seq_duration, amp_params)
    det_wave = InterpolatedWaveform(max_seq_duration, det_params)

    wdetunings = None
    final_detuning = det_params[-1]
    if self.dmm and final_detuning > 0:
        wdetunings = weighted_detunings(
            self.register,
            max_seq_duration,
            self.norm_weights_list,
            final_detuning=-final_detuning,
        )

    shaped_drive = Drive(amplitude=amp_wave, detuning=det_wave, weighted_detunings=wdetunings)

    return shaped_drive

compute_qubo_cost(bitstring, QUBO)

The qubo cost for a single bitstring to apply during optimization.

PARAMETER DESCRIPTION
bitstring

candidate bitstring.

TYPE: str

QUBO

qubo coefficients.

TYPE: Tensor

RETURNS DESCRIPTION
float

respective cost of bitstring.

TYPE: float

Source code in qubosolver/pipeline/drive.py
def compute_qubo_cost(self, bitstring: str, QUBO: torch.Tensor) -> float:
    """The qubo cost for a single bitstring to apply during optimization.

    Args:
        bitstring (str): candidate bitstring.
        QUBO (torch.Tensor): qubo coefficients.

    Returns:
        float: respective cost of bitstring.
    """
    if self.optimized_custom_qubo_cost is None:
        return calculate_qubo_cost(bitstring, QUBO)

    return cast(float, self.optimized_custom_qubo_cost(bitstring, QUBO))

generate(register)

Generate a drive via optimization.

PARAMETER DESCRIPTION
register

The physical register layout.

TYPE: Register

RETURNS DESCRIPTION
Drive

A generated Drive.

TYPE: Drive

QUBOSolution

An instance of the qubo solution

TYPE: QUBOSolution

Source code in qubosolver/pipeline/drive.py
def generate(
    self,
    register: Register,
) -> tuple[Drive, QUBOSolution]:
    """
    Generate a drive via optimization.

    Args:
        register (Register): The physical register layout.

    Returns:
        Drive: A generated Drive.
        QUBOSolution: An instance of the qubo solution
    """
    # TODO: Harmonize the output of the pulse_shaper generate
    QUBO = self.qubo_coefficients
    self.register = register

    self.norm_weights_list = self._compute_norm_weights()

    n_amp = 3
    n_det = 3
    max_amp: float = 1e6  # large value for bounds if no max_amp
    if self.device._device.channels["rydberg_global"].max_amp:
        max_amp = self.device._device.channels["rydberg_global"].max_amp
        assert max_amp is not None
        # added to avoid rouding errors that make the simulation fail (overcoming max_amp)
        max_amp = max_amp - 1e-6

    max_det: float = 1e6  # large value for bounds if no max_det
    if self.device._device.channels["rydberg_global"].max_abs_detuning:
        max_det = self.device._device.channels["rydberg_global"].max_abs_detuning
        assert max_det is not None
        max_det -= 1e-6  # same

    bounds = [(1, max_amp)] * n_amp + [(-max_det, 0)] + [(-max_det, max_det)] * (n_det - 1)
    x0 = (
        self.config.drive_shaping.optimized_initial_omega_parameters
        + self.config.drive_shaping.optimized_initial_detuning_parameters
    )

    def objective(x: list[float]) -> float:
        drive = self.build_drive(x)

        try:
            bitstrings, counts, probabilities, costs, cost_eval, best_bitstring = (
                self.run_simulation(
                    self.register,
                    drive,
                    QUBO,
                    convert_to_tensor=False,
                )
            )
            if self.optimized_custom_objective_fn is not None:
                cost_eval = self.optimized_custom_objective_fn(
                    bitstrings,
                    counts,
                    probabilities,
                    costs,
                    cost_eval,
                    best_bitstring,
                )
            if not np.isfinite(cost_eval):
                print(f"[Warning] Non-finite cost encountered: {cost_eval} at x={x}")
                cost_eval = 1e4

        except Exception as e:
            print(f"[Exception] Error during simulation at x={x}: {e}")
            cost_eval = 1e4

        if self.optimized_callback_objective is not None:
            self.optimized_callback_objective({"x": x, "cost_eval": cost_eval})
        return float(cost_eval)

    opt_result = gp_minimize(
        objective, bounds, x0=x0, n_calls=self.config.drive_shaping.optimized_n_calls
    )

    if opt_result and opt_result.x:
        self.best_params = opt_result.x
        self.drive = self.build_drive(self.best_params)  # type: ignore[arg-type]

        (
            self.bitstrings,
            self.counts,
            self.probabilities,
            self.costs,
            self.best_cost,
            self.best_bitstring,
        ) = self.run_simulation(self.register, self.drive, QUBO, convert_to_tensor=True)

    if self.bitstrings is None or self.counts is None:
        # TODO: what needs to be returned here?
        # the generate function should always return a drive - even if it is not good.
        # we need to return a drive (self.srive) - which is none here.
        return self.drive, QUBOSolution(None, None)  # type: ignore[return-value]

    assert self.costs is not None
    solution = QUBOSolution(
        bitstrings=self.bitstrings,
        counts=self.counts,
        probabilities=self.probabilities,
        costs=self.costs,
    )
    assert self.drive is not None
    return self.drive, solution

run_simulation(register, drive, QUBO, convert_to_tensor=True)

Run a quantum program using backend and returns a tuple of (bitstrings, counts, probabilities, costs, best cost, best bitstring).

PARAMETER DESCRIPTION
register

register of quantum program.

TYPE: Register

drive

drive to run on backend.

TYPE: Drive

QUBO

Qubo coefficients.

TYPE: Tensor

convert_to_tensor

Convert tuple components to tensors. Defaults to True.

TYPE: bool DEFAULT: True

RETURNS DESCRIPTION
tuple

tuple of (bitstrings, counts, probabilities, costs, best cost, best bitstring)

TYPE: tuple

Source code in qubosolver/pipeline/drive.py
def run_simulation(
    self,
    register: Register,
    drive: Drive,
    QUBO: torch.Tensor,
    convert_to_tensor: bool = True,
) -> tuple:
    """Run a quantum program using backend and returns
        a tuple of (bitstrings, counts, probabilities, costs, best cost, best bitstring).

    Args:
        register (Register): register of quantum program.
        drive (Drive): drive to run on backend.
        QUBO (torch.Tensor): Qubo coefficients.
        convert_to_tensor (bool, optional): Convert tuple components to tensors.
            Defaults to True.

    Returns:
        tuple: tuple of (bitstrings, counts, probabilities, costs, best cost, best bitstring)
    """
    try:
        program = QuantumProgram(register=register, drive=drive)
        program.compile_to(device=self.device)
        execution_result = self.backend.run(program)[0]
        bitstring_counts = execution_result.final_bitstrings

        cost_dict = {b: self.compute_qubo_cost(b, QUBO) for b in bitstring_counts.keys()}

        best_bitstring = min(cost_dict, key=cost_dict.get)  # type: ignore[arg-type]
        best_cost = cost_dict[best_bitstring]

        if convert_to_tensor:
            keys = list(bitstring_counts.keys())
            values = list(bitstring_counts.values())

            bitstrings_tensor = torch.tensor(
                [[int(b) for b in bitstr] for bitstr in keys], dtype=torch.int32
            )
            counts_tensor = torch.tensor(values, dtype=torch.int32)
            probabilities_tensor = counts_tensor.float() / counts_tensor.sum()

            costs_tensor = torch.tensor(
                [self.compute_qubo_cost(b, QUBO) for b in keys], dtype=torch.float32
            )

            return (
                bitstrings_tensor,
                counts_tensor,
                probabilities_tensor,
                costs_tensor,
                best_cost,
                best_bitstring,
            )
        else:
            counts = list(bitstring_counts.values())
            nsamples = float(sum(counts))
            return (
                list(bitstring_counts.keys()),
                counts,
                [c / nsamples for c in counts],
                list(cost_dict.values()),
                best_cost,
                best_bitstring,
            )

    except Exception as e:
        print(f"Simulation failed: {e}")
        return (
            torch.tensor([]),
            torch.tensor([]),
            torch.tensor([]),
            torch.tensor([]),
            float("inf"),
            None,
        )

get_drive_shaper(instance, config, backend)

Method that returns the correct DriveShaper based on configuration. The correct drive shaping method can be identified using the config, and an object of this driveshaper can be returned using this function.

PARAMETER DESCRIPTION
instance

The QUBO problem to embed.

TYPE: QUBOInstance

config

The solver configuration used.

TYPE: SolverConfig

backend

Backend to extract device from or to use during drive shaping.

TYPE: BaseBackend

RETURNS DESCRIPTION
BaseDriveShaper

The representative Drive Shaper object.

Source code in qubosolver/pipeline/drive.py
def get_drive_shaper(
    instance: QUBOInstance,
    config: SolverConfig,
    backend: BaseBackend,
) -> BaseDriveShaper:
    """
    Method that returns the correct DriveShaper based on configuration.
    The correct drive shaping method can be identified using the config, and an
    object of this driveshaper can be returned using this function.

    Args:
        instance (QUBOInstance): The QUBO problem to embed.
        config (SolverConfig): The solver configuration used.
        backend (BaseBackend): Backend to extract device from or to use
            during drive shaping.

    Returns:
        (BaseDriveShaper): The representative Drive Shaper object.
    """
    if config.drive_shaping.drive_shaping_method == DriveType.ADIABATIC:
        return AdiabaticDriveShaper(instance, config, backend)
    elif config.drive_shaping.drive_shaping_method == DriveType.OPTIMIZED:
        return OptimizedDriveShaper(instance, config, backend)
    elif issubclass(config.drive_shaping.drive_shaping_method, BaseDriveShaper):
        return cast(
            BaseDriveShaper,
            config.drive_shaping.drive_shaping_method(instance, config, backend),
        )
    else:
        raise NotImplementedError

Embedding

BLaDEmbedder(instance, config, backend)

Bases: BaseEmbedder

BLaDE (Balanced Latently Dimensional Embedder)

Computes positions for nodes so that their interactions according to a device approach the desired values at best. The result can be used as an embedding. Its prior target is on interaction matrices or QUBOs, but it can also be used for MIS with limitations if the adjacency matrix is converted into a QUBO. The general principle is based on the Fruchterman-Reingold algorithm.

Source code in qubosolver/pipeline/embedder.py
def __init__(self, instance: QUBOInstance, config: SolverConfig, backend: BaseBackend):
    """
    Args:
        instance (QUBOInstance): The QUBO problem to embed.
        config (SolverConfig): The Solver Configuration.
    """
    self.instance: QUBOInstance = instance
    self.config: SolverConfig = config
    self.register: QoolqitRegister | None = None
    self.backend = backend

    # for converting to qoolqit
    self._distance_conversion = self.config.device.converter.factors[2]

BaseEmbedder(instance, config, backend)

Bases: ABC

Abstract base class for all embedders.

Prepares the geometry (register) of atoms based on the QUBO instance. Returns a Register compatible with Pasqal/Pulser devices.

PARAMETER DESCRIPTION
instance

The QUBO problem to embed.

TYPE: QUBOInstance

config

The Solver Configuration.

TYPE: SolverConfig

Source code in qubosolver/pipeline/embedder.py
def __init__(self, instance: QUBOInstance, config: SolverConfig, backend: BaseBackend):
    """
    Args:
        instance (QUBOInstance): The QUBO problem to embed.
        config (SolverConfig): The Solver Configuration.
    """
    self.instance: QUBOInstance = instance
    self.config: SolverConfig = config
    self.register: QoolqitRegister | None = None
    self.backend = backend

    # for converting to qoolqit
    self._distance_conversion = self.config.device.converter.factors[2]

embed() abstractmethod

Creates a layout of atoms as the register.

RETURNS DESCRIPTION
Register

The register.

TYPE: Register

Source code in qubosolver/pipeline/embedder.py
@abstractmethod
def embed(self) -> QoolqitRegister:
    """
    Creates a layout of atoms as the register.

    Returns:
        Register: The register.
    """

GreedyEmbedder(instance, config, backend)

Bases: BaseEmbedder

Create an embedding in a greedy fashion.

At each step, place one logical node onto one trap to minimize the incremental mismatch between the logical QUBO matrix Q and the physical interaction matrix U (approx. C / ||r_i - r_j||^6).

Source code in qubosolver/pipeline/embedder.py
def __init__(self, instance: QUBOInstance, config: SolverConfig, backend: BaseBackend):
    """
    Args:
        instance (QUBOInstance): The QUBO problem to embed.
        config (SolverConfig): The Solver Configuration.
    """
    self.instance: QUBOInstance = instance
    self.config: SolverConfig = config
    self.register: QoolqitRegister | None = None
    self.backend = backend

    # for converting to qoolqit
    self._distance_conversion = self.config.device.converter.factors[2]

embed()

Creates a layout of atoms as the register.

RETURNS DESCRIPTION
Register

The register.

TYPE: Register

Source code in qubosolver/pipeline/embedder.py
@typing.no_type_check
def embed(self) -> QoolqitRegister:
    """
    Creates a layout of atoms as the register.

    Returns:
        Register: The register.
    """
    if self.config.embedding.greedy_traps < self.instance.size:
        raise ValueError(
            "Number of traps must be at least equal to the number of atoms on the register."
        )

    # compute density (unchanged)
    self.config.embedding.greedy_density = calculate_density(
        self.instance.coefficients, self.instance.size
    )

    # build params for the Greedy algorithm
    params = {
        "device": self.config.device._device,
        "layout": self.config.embedding.greedy_layout,
        "traps": int(self.config.embedding.greedy_traps),
        "spacing": float(self.config.embedding.greedy_spacing),
        # animation controls (all read by Greedy)
        "draw_steps": bool(self.config.embedding.draw_steps),  # collect per-step data
        "animation": bool(self.config.embedding.draw_steps),  # render animation after run
        "animation_save_path": self.config.embedding.animation_save_path,  # optional export
    }

    # --- DEBUG / INFO: show where Greedy comes from + the params we’ll pass
    dev = params["device"]
    dev_str = (
        getattr(dev, "name", None)
        or getattr(dev, "device_name", None)
        or dev.__class__.__name__
    )
    printable = dict(params)
    printable["device"] = dev_str  # avoid dumping the whole object
    # --- Call Greedy (unchanged public signature)
    best, _, coords, _, _ = Greedy().launch_greedy(
        Q=self.instance.coefficients,
        params=params,
        # no extra kwargs; Greedy reads animation/draw/save_path from params
    )
    coords /= self._distance_conversion

    # build the register (unchanged)
    qubits = {f"q{i}": coord for i, coord in enumerate(coords)}
    register = QoolqitRegister(qubits)
    return register

get_embedder(instance, config, backend)

Method that returns the correct embedder based on configuration. The correct embedding method can be identified using the config, and an object of this embedding can be returned using this function.

PARAMETER DESCRIPTION
instance

The QUBO problem to embed.

TYPE: QUBOInstance

config

The quantum device to target.

TYPE: Device

RETURNS DESCRIPTION
BaseEmbedder

The representative embedder object.

Source code in qubosolver/pipeline/embedder.py
def get_embedder(
    instance: QUBOInstance, config: SolverConfig, backend: BaseBackend
) -> BaseEmbedder:
    """
    Method that returns the correct embedder based on configuration.
    The correct embedding method can be identified using the config, and an
    object of this embedding can be returned using this function.

    Args:
        instance (QUBOInstance): The QUBO problem to embed.
        config (Device): The quantum device to target.

    Returns:
        (BaseEmbedder): The representative embedder object.
    """

    if config.embedding.embedding_method == EmbedderType.BLADE:
        return BLaDEmbedder(instance, config, backend)
    elif config.embedding.embedding_method == EmbedderType.GREEDY:
        return GreedyEmbedder(instance, config, backend)
    elif issubclass(config.embedding.embedding_method, BaseEmbedder):
        return typing.cast(
            BaseEmbedder, config.embedding.embedding_method(instance, config, backend)
        )
    else:
        raise NotImplementedError