Skip to content

Training tools

Dataloaders

When using Qadence, you can supply classical data to a quantum machine learning algorithm by using a standard PyTorch DataLoader instance. Qadence also provides the DictDataLoader convenience class which allows to build dictionaries of DataLoaders instances and easily iterate over them.

import torch
from torch.utils.data import DataLoader, TensorDataset
from qadence.ml_tools import DictDataLoader, to_dataloader


def dataloader(data_size: int = 25, batch_size: int = 5, infinite: bool = False) -> DataLoader:
    x = torch.linspace(0, 1, data_size).reshape(-1, 1)
    y = torch.sin(x)
    return to_dataloader(x, y, batch_size=batch_size, infinite=infinite)


def dictdataloader(data_size: int = 25, batch_size: int = 5) -> DictDataLoader:
    dls = {}
    for k in ["y1", "y2"]:
        x = torch.rand(data_size, 1)
        y = torch.sin(x)
        dls[k] = to_dataloader(x, y, batch_size=batch_size, infinite=True)
    return DictDataLoader(dls)


# iterate over standard DataLoader
for (x,y) in dataloader(data_size=6, batch_size=2):
    print(f"Standard {x = }")

# construct an infinite dataset which will keep sampling indefinitely
n_epochs = 5
dl = iter(dataloader(data_size=6, batch_size=2, infinite=True))
for _ in range(n_epochs):
    (x, y) = next(dl)
    print(f"Infinite {x = }")

# iterate over DictDataLoader
ddl = dictdataloader()
data = next(iter(ddl))
print(f"{data = }")
Standard x = tensor([[0.0000],
        [0.2000]])
Standard x = tensor([[0.4000],
        [0.6000]])
Standard x = tensor([[0.8000],
        [1.0000]])
Infinite x = tensor([[0.0000],
        [0.2000]])
Infinite x = tensor([[0.4000],
        [0.6000]])
Infinite x = tensor([[0.8000],
        [1.0000]])
Infinite x = tensor([[0.0000],
        [0.2000]])
Infinite x = tensor([[0.4000],
        [0.6000]])
data = {'y1': [tensor([[0.3958],
        [0.5304],
        [0.2118],
        [0.3728],
        [0.3472]]), tensor([[0.3856],
        [0.5059],
        [0.2102],
        [0.3642],
        [0.3403]])], 'y2': [tensor([[0.6429],
        [0.2938],
        [0.0335],
        [0.4684],
        [0.1429]]), tensor([[0.5996],
        [0.2895],
        [0.0335],
        [0.4514],
        [0.1424]])]}

Optimization routines

For training QML models, Qadence also offers a few out-of-the-box routines for optimizing differentiable models, e.g. QNNs and QuantumModel, containing either trainable and/or non-trainable parameters (see the parameters tutorial for detailed information about parameter types):

These routines performs training, logging/printing loss metrics and storing intermediate checkpoints of models. In the following, we use train_with_grad as example but the code can be used directly with the gradient-free routine.

As every other training routine commonly used in Machine Learning, it requires model, data and an optimizer as input arguments. However, in addition, it requires a loss_fn and a TrainConfig. A loss_fn is required to be a function which expects both a model and data and returns a tuple of (loss, metrics: <dict>), where metrics is a dict of scalars which can be customized too.

import torch
from itertools import count
cnt = count()
criterion = torch.nn.MSELoss()

def loss_fn(model: torch.nn.Module, data: torch.Tensor) -> tuple[torch.Tensor, dict]:
    next(cnt)
    x, y = data[0], data[1]
    out = model(x)
    loss = criterion(out, y)
    return loss, {}

The TrainConfig tells train_with_grad what batch_size should be used, how many epochs to train, in which intervals to print/log metrics and how often to store intermediate checkpoints.

from qadence.ml_tools import TrainConfig

batch_size = 5
n_epochs = 100

config = TrainConfig(
    folder="some_path/",
    max_iter=n_epochs,
    checkpoint_every=100,
    write_every=100,
    batch_size=batch_size,
)

Let's see it in action with a simple example.

Fitting a funtion with a QNN using ml_tools

In Quantum Machine Learning, the general consensus is to use complex128 precision for states and operators and float64 precision for parameters. This is also the convention which is used in qadence. However, for specific usecases, lower precision can greatly speed up training and reduce memory consumption. When using the pyqtorch backend, qadence offers the option to move a QuantumModel instance to a specific precision using the torch to syntax.

Let's look at a complete example of how to use train_with_grad now.

from pathlib import Path
import torch
from functools import reduce
from operator import add
from itertools import count
import matplotlib.pyplot as plt

from qadence import Parameter, QuantumCircuit, Z
from qadence import hamiltonian_factory, hea, feature_map, chain
from qadence.models import QNN
from qadence.ml_tools import  TrainConfig, train_with_grad, to_dataloader

DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
DTYPE = torch.complex64
n_qubits = 4
fm = feature_map(n_qubits)
ansatz = hea(n_qubits=n_qubits, depth=3)
observable = hamiltonian_factory(n_qubits, detuning=Z)
circuit = QuantumCircuit(n_qubits, fm, ansatz)

model = QNN(circuit, observable, backend="pyqtorch", diff_mode="ad")
batch_size = 100
input_values = {"phi": torch.rand(batch_size, requires_grad=True)}
pred = model(input_values)

cnt = count()
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)

def loss_fn(model: torch.nn.Module, data: torch.Tensor) -> tuple[torch.Tensor, dict]:
    next(cnt)
    x, y = data[0], data[1]
    out = model(x)
    loss = criterion(out, y)
    return loss, {}

n_epochs = 300

config = TrainConfig(
    max_iter=n_epochs,
    batch_size=batch_size,
)

fn = lambda x, degree: .05 * reduce(add, (torch.cos(i*x) + torch.sin(i*x) for i in range(degree)), 0.)
x = torch.linspace(0, 10, batch_size, dtype=torch.float32).reshape(-1, 1)
y = fn(x, 5)

data = to_dataloader(x, y, batch_size=batch_size, infinite=True)

train_with_grad(model, data, optimizer, config, loss_fn=loss_fn,device=DEVICE, dtype=DTYPE)

plt.clf()
plt.plot(x.numpy(), y.numpy(), label='truth')
plt.plot(x.numpy(), model(x).detach().numpy(), "--", label="final", linewidth=3)
plt.legend()
2024-05-03T08:23:54.993332 image/svg+xml Matplotlib v3.7.5, https://matplotlib.org/

For users who want to use the low-level API of qadence, here an example written without train_with_grad.

Fitting a function - Low-level API

from pathlib import Path
import torch
from itertools import count
from qadence.constructors import hamiltonian_factory, hea, feature_map
from qadence import chain, Parameter, QuantumCircuit, Z
from qadence.models import QNN
from qadence.ml_tools import train_with_grad, TrainConfig

n_qubits = 2
fm = feature_map(n_qubits)
ansatz = hea(n_qubits=n_qubits, depth=3)
observable = hamiltonian_factory(n_qubits, detuning=Z)
circuit = QuantumCircuit(n_qubits, fm, ansatz)

model = QNN(circuit, observable, backend="pyqtorch", diff_mode="ad")
batch_size = 1
input_values = {"phi": torch.rand(batch_size, requires_grad=True)}
pred = model(input_values)

criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
n_epochs=50
cnt = count()

tmp_path = Path("/tmp")

config = TrainConfig(
    folder=tmp_path,
    max_iter=n_epochs,
    checkpoint_every=100,
    write_every=100,
    batch_size=batch_size,
)

x = torch.linspace(0, 1, batch_size).reshape(-1, 1)
y = torch.sin(x)

for i in range(n_epochs):
    out = model(x)
    loss = criterion(out, y)
    loss.backward()
    optimizer.step()

Custom train loop

If you need custom training functionality that goes beyond what is available in qadence.ml_tools.train_with_grad and qadence.ml_tools.train_gradient_free you can write your own training loop based on the building blocks that are available in Qadence.

A simplified version of Qadence's train loop is defined below. Feel free to copy it and modify at will.

from typing import Callable, Union

from torch.nn import Module
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from qadence.ml_tools.config import TrainConfig
from qadence.ml_tools.data import DictDataLoader, data_to_device
from qadence.ml_tools.optimize_step import optimize_step
from qadence.ml_tools.printing import print_metrics, write_tensorboard
from qadence.ml_tools.saveload import load_checkpoint, write_checkpoint


def train(
    model: Module,
    data: DataLoader,
    optimizer: Optimizer,
    config: TrainConfig,
    loss_fn: Callable,
    device: str = "cpu",
    optimize_step: Callable = optimize_step,
    write_tensorboard: Callable = write_tensorboard,
) -> tuple[Module, Optimizer]:

    # Move model to device before optimizer is loaded
    model = model.to(device)

    # load available checkpoint
    init_iter = 0
    if config.folder:
        model, optimizer, init_iter = load_checkpoint(config.folder, model, optimizer)

    # initialize tensorboard
    writer = SummaryWriter(config.folder, purge_step=init_iter)

    dl_iter = iter(dataloader)

    # outer epoch loop
    for iteration in range(init_iter, init_iter + config.max_iter):
        data = data_to_device(next(dl_iter), device)
        loss, metrics = optimize_step(model, optimizer, loss_fn, data)

        if iteration % config.print_every == 0 and config.verbose:
            print_metrics(loss, metrics, iteration)

        if iteration % config.write_every == 0:
            write_tensorboard(writer, loss, metrics, iteration)

        if config.folder:
            if iteration % config.checkpoint_every == 0:
                write_checkpoint(config.folder, model, optimizer, iteration)

    # Final writing and checkpointing
    if config.folder:
        write_checkpoint(config.folder, model, optimizer, iteration)
    write_tensorboard(writer, loss, metrics, iteration)
    writer.close()

    return model, optimizer